1
|
Barboza LGA, Lourenço SC, Aleluia A, Senes GP, Otero XL, Guilhermino L. Are microplastics a new cardiac threat? A pilot study with wild fish from the North East Atlantic Ocean. ENVIRONMENTAL RESEARCH 2024; 261:119694. [PMID: 39068971 DOI: 10.1016/j.envres.2024.119694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
Global environmental contamination by microplastics (MPs) is a growing problem with potential One Health impacts. The presence of MPs in vital organs, such as the heart, is of particular concern, but the knowledge is still limited. The goal of the present pilot study was to investigate the potential presence of MPs in the heart of wild specimens of three commercial fish species (Merluccius merluccius, Sardina pilchardus, and Trisopterus luscus) from the North East Atlantic Ocean. Heart samples from 154 fish were analysed for MP content (one heart sample per fish). A total of 44 MPs were recovered from heart samples from the three species. MPs had varied chemical composition (5 polymers), shapes (4) and colours (5). Differences in the profile of the MPs among species was observed (p ≤ 0.05). Thirty fish (19%) had MPs in their hearts, with a total mean (±SD) concentration of 0.286 ± 0.644 MPs/fish. S. pilchardus had the highest heart contamination (p ≤ 0.05). There were no significant (p > 0.05) differences between M. merluccius and T. luscus. These findings in fish with different biological and ecological traits together with literature data suggest that heart contamination likely is a disseminated phenomenon. Therefore, further research on the presence of MPs in the cardiovascular system and its potential health effects is very much needed.
Collapse
Affiliation(s)
- Luís Gabriel A Barboza
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health (ECOTOX), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Departamento de Estudos de Populações, Laboratório de Ecotoxicologia e Ecologia (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Sara Couto Lourenço
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health (ECOTOX), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Departamento de Estudos de Populações, Laboratório de Ecotoxicologia e Ecologia (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Alexandre Aleluia
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health (ECOTOX), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Departamento de Estudos de Populações, Laboratório de Ecotoxicologia e Ecologia (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Giovanni Paolo Senes
- CRETUS, Department of Edaphology and Agricultural Chemistry - Faculty of Biology, Universidade de Santiago de Compostela, Campus Vida, Santiago de Compostela 15782, Spain
| | - Xosé L Otero
- CRETUS, Department of Edaphology and Agricultural Chemistry - Faculty of Biology, Universidade de Santiago de Compostela, Campus Vida, Santiago de Compostela 15782, Spain; REBUSC, Network of biological stations of the University of Santiago de Compostela, Marine Biology Station A Graña, Ferrol, Spain; RIAIDT, The Network of Infrastructures to Support Research and Technological Development of the University of Santiago de Compostela, Edificio Cactus, Campus Vida, Santiago de Compostela, 15782, Spain.
| | - Lúcia Guilhermino
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health (ECOTOX), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Departamento de Estudos de Populações, Laboratório de Ecotoxicologia e Ecologia (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
2
|
Yadav DK, Samantaray BP, Kumar R. Effect of alternative natural diet on microplastic ingestion, functional responses and trophic transfer in a tri-trophic coastal pelagic food web. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:174999. [PMID: 39097011 DOI: 10.1016/j.scitotenv.2024.174999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/27/2024] [Accepted: 07/22/2024] [Indexed: 08/05/2024]
Abstract
The patchy distribution of microplastics (MP) and their size range similar to planktonic organisms, are likely to have major ecological consequences, through MP ingestion, food dilution, and transfer across trophic levels. Our study applied a community module using tritrophic food chain with zooplankton as prey, and a planktivorous seabass fry as predator. We conducted a series of feeding experiments and recorded the direct uptake of MP under six different concentrations ranging from 25 to 800 particles L-1. We also estimated the indirect transfer of MP via trophic link. The ingestion rates for Brachionus plicatilis, Mesocyclops isabellae, and Lates calcarifer, were 3.7 ± 0.3 MP ind-1 min-1, 1.69 ± 0.1 MP ind-1 min-1, and 3.51 ± 0.52 MP ind-1 h-1, respectively. In the presence of a natural diet, rotifers and copepods ingested significantly lower number, whereas, fish fry ingested a higher number of MP, suggesting further vulnerability to the consumers of MP-contaminated fish and potential biomagnification at higher trophic levels. Overall, the MP uptake rate increased with increasing concentration, and finally leveled off, indicating a type II functional response to MP concentration. The presence of natural diet led to a lower Km value. In the indirect transfer experiment, 74 % of B. plicatilis and 78 % of M. isabellae individuals were contaminated with MP, when offered as prey. Brachionid mastax and MP particles were observed in the gut of copepods. The fish fry gut content also recorded brachionid mastax, MP-contaminated copepods, and MP particles, showing direct evidence of trophic transfer pointing to a cascading effect on higher trophic levels including humans via piscivory.
Collapse
Affiliation(s)
- Devesh Kumar Yadav
- Ecosystem Ecology Research Unit, Department of Environmental Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, NH-120, Gaya-Panchanpur Rd, Fatehpur, Gaya, Bihar 824326, India.
| | - Banaja Prakashini Samantaray
- Ecosystem Ecology Research Unit, Department of Environmental Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, NH-120, Gaya-Panchanpur Rd, Fatehpur, Gaya, Bihar 824326, India.
| | - Ram Kumar
- Ecosystem Ecology Research Unit, Department of Environmental Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, NH-120, Gaya-Panchanpur Rd, Fatehpur, Gaya, Bihar 824326, India.
| |
Collapse
|
3
|
Yu X, Liu Y, Tan C, Zhai L, Wang T, Fang J, Zhang B, Ma W, Lu X. Quantifying microplastics in sediments of Jinzhou Bay, China: Characterization and ecological risk with a focus on small sizes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174968. [PMID: 39067590 DOI: 10.1016/j.scitotenv.2024.174968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/14/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
Small-sized microplastics (MPs) pose greater ecological toxicity due to their larger surface area, which makes them more likely to act as carriers for other pollutants and to be ingested by aquatic organisms. However, traditional visual analysis often neglects small-sized MPs and their associated ecological risk. This study utilized Laser Direct Infrared (LDIR) spectroscopy and traditional visual analysis to examine MPs in 31 sediment samples from Jinzhou Bay, a typical semi-enclosed bay located at the economic center of Dalian, China. The results showed significant heterogeneity in MP distribution, with averages of 1192 and 2361 items/kg dry weight reported by visual analysis and LDIR spectroscopy, respectively. LDIR spectroscopy identified MPs as small as 10 μm, with the majority of MPs (89.21 %) within the 10-250 μm range, and a significant proportion (46.45 %) between 10 and 50 μm among them. However, visual analysis was limited to detecting MPs >50 μm, and significant portions were identified between 50 and 100 μm (49.36 %) and 100-250 μm (31.01 %), missing a substantial fraction of smaller MPs. The predominant polymers identified were polyamide (PA), polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), and acrylonitrile butadiene styrene (ABS). LDIR spectroscopy demonstrated a strong positive correlation between MP abundance and clay content, a relationship not observed with traditional visual analysis. The Potential Ecological Risk Index (PERI) indicated that over 87 % of sites posed an extremely high risk according to LDIR spectroscopy, compared to 51 % by traditional visual analysis. These discrepancy underscores the underestimation of ecological risks by traditional methods, particularly for small-sized MPs. High-risk polymers such as polyvinyl chloride (PVC), ABS, and polyurethane (PUR) significantly influenced PERI values. These findings highlight the critical need for precise identification and thorough risk assessment of small-sized MPs in environmental studies and offer insights for understanding of MP vertical migration in aquatic environments, particularly in the context of co-settlement with sediments.
Collapse
Affiliation(s)
- Xue Yu
- Tianjin International Joint Research Center for Environmental Biogeochemical Technology and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yufei Liu
- Tianjin International Joint Research Center for Environmental Biogeochemical Technology and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Normal University, Tianjin 300387, China; Nagoya University, Nagoya 464-8601, Japan
| | - Cuiling Tan
- Tianjin Academy of Eco-environmental Sciences, Tianjin 300191, China
| | - Lifang Zhai
- Tianjin International Joint Research Center for Environmental Biogeochemical Technology and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | | | - Jing Fang
- Tianjin Normal University, Tianjin 300387, China
| | - Bo Zhang
- R&D Department, FS Ltd., Katikati 3129, New Zealand
| | - Weiqi Ma
- Tianjin International Joint Research Center for Environmental Biogeochemical Technology and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xueqiang Lu
- Tianjin International Joint Research Center for Environmental Biogeochemical Technology and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
4
|
Jiang Y, Niu S, Wu J. The role of algae in regulating the fate of microplastics: A review for processes, mechanisms, and influencing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175227. [PMID: 39098419 DOI: 10.1016/j.scitotenv.2024.175227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/14/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
As an important emerging pollutant, the fate of microplastics (MPs) in ecosystems is of growing global concern. In addition to hydrodynamics and animals, algae can also affect the transport of MPs in aquatic environments, which could potentially remove MPs from the water column. Although researchers have conducted many studies on the sink of MPs regulated by algae in both marine and freshwater environments, there is still a lack of comprehensive understanding coupled with the increasingly scattered study contents and findings. This review aims to provide a systematic discussion of the processes, mechanisms, and influencing factors, which are coupled with the sink of MPs changes by algae. The main processes identified include retention, flocculation, deposition, and degradation. The retention of MPs is achieved by adhesion of MPs to algae or embedment/encrustation of MPs within the epibiont matrix of algae, thereby preventing MPs from migrating with water currents. The extracellular polymeric substances (EPS) and enzymes produced by algal metabolic activities can lead not only to the formation of aggregates containing MPs but also to the biodegradation of MPs. The processes that algae alter the fate of MPs in aquatic environments are very complex and can be influenced by various factors such as algal attributes, microplastic characteristics and environmental conditions. This review provides insights into recent advances in the fate of aquatic MPs and highlights the need for further research on MPs-algae interactions, potentially shortening the knowledge gap in the sink of MPs in aquatic ecosystems.
Collapse
Affiliation(s)
- Yun Jiang
- Department of Environmental Science and Engineering, School of Energy and Environment, Anhui University of Technology, Ma'anshan 243002, People's Republic of China
| | - Siping Niu
- Department of Environmental Science and Engineering, School of Energy and Environment, Anhui University of Technology, Ma'anshan 243002, People's Republic of China.
| | - Jing Wu
- Department of Environmental Science and Engineering, School of Energy and Environment, Anhui University of Technology, Ma'anshan 243002, People's Republic of China
| |
Collapse
|
5
|
Menger F, Römerscheid M, Lips S, Klein O, Nabi D, Gandrass J, Joerss H, Wendt-Potthoff K, Bedulina D, Zimmermann T, Schmitt-Jansen M, Huber C, Böhme A, Ulrich N, Beck AJ, Pröfrock D, Achterberg EP, Jahnke A, Hildebrandt L. Screening the release of chemicals and microplastic particles from diverse plastic consumer products into water under accelerated UV weathering conditions. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135256. [PMID: 39106725 DOI: 10.1016/j.jhazmat.2024.135256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/09/2024]
Abstract
Photodegradation of plastic consumer products is known to accelerate weathering and facilitate the release of chemicals and plastic particles into the aquatic environment. However, these processes are complex. In our presented pilot study, eight plastic consumer products were leached in distilled water under strong ultraviolet (UV) light simulating eight months of Central European climate and compared to their respective dark controls (DCs). The leachates and formed plastic particles were exploratorily characterized using a range of chemical analytical tools to describe degradation and leaching processes. These techniques covered (a) microplastic analysis, showing substantial liberation of plastic particles further increased under UV exposure, (b) non-targeted mass spectrometric characterization of the leachates, revealing several hundreds of chemical features with typically only minor agreement between the UV exposure and the corresponding DCs, (c) target analysis of 71 organic analytes, of which 15 could be detected in at least one sample, and (d) metal(loid) analysis, which revealed substantial release of toxic metal(loid)s further enhanced under UV exposure. A data comparison with the US-EPA's ToxVal and ToxCast databases showed that the detected metals and organic additives might pose substantial health and environmental concerns, requiring further study and comprehensive impact assessments.
Collapse
Affiliation(s)
- Frank Menger
- Department of Organic Environmental Chemistry, Helmholtz-Zentrum Hereon, Max-Planck Straße 1, 21502 Geesthacht, Germany
| | - Mara Römerscheid
- Department of Exposure Science, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Stefan Lips
- Department of Ecotoxicology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Ole Klein
- Department for Inorganic Environmental Chemistry, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Deedar Nabi
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148 Kiel, Germany
| | - Jürgen Gandrass
- Department of Organic Environmental Chemistry, Helmholtz-Zentrum Hereon, Max-Planck Straße 1, 21502 Geesthacht, Germany
| | - Hanna Joerss
- Department of Organic Environmental Chemistry, Helmholtz-Zentrum Hereon, Max-Planck Straße 1, 21502 Geesthacht, Germany
| | - Katrin Wendt-Potthoff
- Department of Lake Research, Helmholtz-Centre for Environmental Research - UFZ, Brueckstr. 3 a, 39114 Magdeburg, Germany
| | - Daria Bedulina
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI), Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Tristan Zimmermann
- Department for Inorganic Environmental Chemistry, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Mechthild Schmitt-Jansen
- Department of Ecotoxicology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Carolin Huber
- Department of Exposure Science, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Alexander Böhme
- Department of Exposure Science, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Nadin Ulrich
- Department of Exposure Science, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Aaron J Beck
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148 Kiel, Germany
| | - Daniel Pröfrock
- Department for Inorganic Environmental Chemistry, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Eric P Achterberg
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148 Kiel, Germany
| | - Annika Jahnke
- Department of Exposure Science, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany; Institute for Environmental Research, RWTH Aachen University, 52047 Aachen, Germany.
| | - Lars Hildebrandt
- Department for Inorganic Environmental Chemistry, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany.
| |
Collapse
|
6
|
Podbielski I, Hamm T, Lenz M. Customized digestion protocols for copepods, euphausiids, chaetognaths and fish larvae facilitate the isolation of ingested microplastics. Sci Rep 2024; 14:19985. [PMID: 39198558 PMCID: PMC11358325 DOI: 10.1038/s41598-024-70366-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Degradation of oceanic plastic waste leads to the formation of microplastics that are ingested by a wide range of animals. Yet, the amounts that are taken up, especially by small zooplankton, are largely unknown. This is mostly due to the complex methodology that is required for isolating ingested microplastics from organisms. We developed customised, effective and benign digestion protocols for four important zooplankton taxa (copepods, euphausiids, chaetognaths and fish larvae), and assessed their digestion efficacy and their potential to cause particle loss or to alter microplastics using six polymers (HDPE, LDPE, PS, PET, PVC, PMMA). All protocols are based on an incubation of the organic matrix with 10% KOH at 38 °C, which is optionally combined with digestive enzymes (chitinase, proteinase K). This yielded digestion efficacies of > 98.2%, recovery rates of > 91.8%, < 2.4% change in microplastics' size, while no visual alteration of the microplastics and no changes in their spectra were observed when analysing them with a hyperspectral imaging camera. The proposed protocols are inexpensive (< 2.15 € per sample), but require several days when enzymatic digestion is included. They will facilitate research on microplastic ingestion by small marine organisms and thus enable well-founded conclusions about the threat that microplastics pose to these animals as well as about the role of biota in determining the vertical distribution of microplastics in oceanic environments.
Collapse
Affiliation(s)
- Imke Podbielski
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.
| | - Thea Hamm
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- The Lower Saxon Wadden Sea National Park Authority, Wilhelmshaven, Germany
| | - Mark Lenz
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| |
Collapse
|
7
|
Rosales GG, Oberhaensli F, Alonso-Hernández C, Longoria-Gándara L. Proposed validation stages for MPs extraction from edible mussels ( Mytilus galloprovincialis). Heliyon 2024; 10:e32212. [PMID: 38975075 PMCID: PMC11225739 DOI: 10.1016/j.heliyon.2024.e32212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 07/09/2024] Open
Abstract
The potential presence of microplastics (MPs) in seafood products presents significant health concerns, demanding the adoption of standardized and validated methodologies. In this study, we introduce a validated method and an innovative technique for extracting MPs from mussels using an oxidizing agent, Corolase enzyme, and a surfactant, thus eliminating the need for mechanical agitation. Evaluation of the extraction process focused on three critical parameters: recovery percentage, repeatability, and chemical integrity, along with color stability. To ensure precision and reliability, low-density infrared spectroscopy (LDIR) was employed to analyze the effect of spectrum quality (Q). Ultimately, this methodology was applied to identify MPs in commercial mussels, with results showcasing the viability of the proposed validation stages for MPs extraction, maintaining MPs integrity with high recovery percentages.
Collapse
Affiliation(s)
- G. García Rosales
- IAEA Environment Laboratoires, 4 Quai Antoine 1er B.P. 800, MC-98000, Monaco
- TECNM/Instituto Tecnológico de Toluca-DEPI. Av. Tecnológico s/n. Colonia Agrícola Bellavista Metepec, C. P. 52149, Mexico
| | - F. Oberhaensli
- IAEA Environment Laboratoires, 4 Quai Antoine 1er B.P. 800, MC-98000, Monaco
| | | | - L.C. Longoria-Gándara
- Division for Latin America/Department of Technical Cooperation International Atomic Energy Agency, Wagramer Strasse 5, P.O. Box 100, A-1400, Vienna, Austria
| |
Collapse
|
8
|
Codrington J, Varnum AA, Hildebrandt L, Pröfrock D, Bidhan J, Khodamoradi K, Höhme AL, Held M, Evans A, Velasquez D, Yarborough CC, Ghane-Motlagh B, Agarwal A, Achua J, Pozzi E, Mesquita F, Petrella F, Miller D, Ramasamy R. Detection of microplastics in the human penis. Int J Impot Res 2024:10.1038/s41443-024-00930-6. [PMID: 38890513 DOI: 10.1038/s41443-024-00930-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
The proliferation of microplastics (MPs) represents a burgeoning environmental and health crisis. Measuring less than 5 mm in diameter, MPs have infiltrated atmospheric, freshwater, and terrestrial ecosystems, penetrating commonplace consumables like seafood, sea salt, and bottled beverages. Their size and surface area render them susceptible to chemical interactions with physiological fluids and tissues, raising bioaccumulation and toxicity concerns. Human exposure to MPs occurs through ingestion, inhalation, and dermal contact. To date, there is no direct evidence identifying MPs in penile tissue. The objective of this study was to assess for potential aggregation of MPs in penile tissue. Tissue samples were extracted from six individuals who underwent surgery for a multi-component inflatable penile prosthesis (IPP). Samples were obtained from the corpora using Adson forceps before corporotomy dilation and device implantation and placed into cleaned glassware. A control sample was collected and stored in a McKesson specimen plastic container. The tissue fractions were analyzed using the Agilent 8700 Laser Direct Infrared (LDIR) Chemical Imaging System (Agilent Technologies. Moreover, the morphology of the particles was investigated by a Zeiss Merlin Scanning Electron Microscope (SEM), complementing the detection range of LDIR to below 20 µm. MPs via LDIR were identified in 80% of the samples, ranging in size from 20-500 µm. Smaller particles down to 2 µm were detected via SEM. Seven types of MPs were found in the penile tissue, with polyethylene terephthalate (47.8%) and polypropylene (34.7%) being the most prevalent. The detection of MPs in penile tissue raises inquiries on the ramifications of environmental pollutants on sexual health. Our research adds a key dimension to the discussion on man-made pollutants, focusing on MPs in the male reproductive system.
Collapse
Affiliation(s)
- Jason Codrington
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Alexandra Aponte Varnum
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Lars Hildebrandt
- Institute of Coastal Environmental Chemistry, Department for Inorganic Environmental Chemistry, Helmholtz-Zentrum Hereon, Max-Planck-Str 1, 21502, Geesthacht, Germany
| | - Daniel Pröfrock
- Institute of Coastal Environmental Chemistry, Department for Inorganic Environmental Chemistry, Helmholtz-Zentrum Hereon, Max-Planck-Str 1, 21502, Geesthacht, Germany
| | - Joginder Bidhan
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Kajal Khodamoradi
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Anke-Lisa Höhme
- Institute of Membrane Research, Helmholtz-Zentrum Hereon, Max-Planck-Str 1, 21502, Geesthacht, Germany
| | - Martin Held
- Institute of Membrane Research, Helmholtz-Zentrum Hereon, Max-Planck-Str 1, 21502, Geesthacht, Germany
| | - Aymara Evans
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - David Velasquez
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Christina C Yarborough
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Bahareh Ghane-Motlagh
- Dr. J.T. MacDonald Foundation BioNIUM, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Ashutosh Agarwal
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | - Justin Achua
- University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Edoardo Pozzi
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
- Vita-Salute San Raffaele University, Milan, Italy
- IRCCS Ospedale San Raffaele, Urology, Milan, Italy
| | - Francesco Mesquita
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Francis Petrella
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - David Miller
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Ranjith Ramasamy
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
9
|
Lin H, Li X, Hu W, Yu S, Li X, Lei L, Yang F, Luo Y. Landscape and risk assessment of microplastic contamination in farmed oysters and seawater along the coastline of China. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134169. [PMID: 38565022 DOI: 10.1016/j.jhazmat.2024.134169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/05/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
Microplastic (MP) pollution poses a significant threat to marine ecosystem and seafood safety. However, comprehensive and comparable assessments of MP profiles and their ecological and health in Chinese farming oysters are lacking. This study utilized laser infrared imaging spectrometer (LDIR) to quantify MPs in oysters and its farming seawater at 18 sites along Chinese coastlines. Results revealed a total of 3492 MPs in farmed oysters and seawater, representing 34 MP types, with 20-100 µm MP fragments being the dominant. Polyurethane (PU) emerged as the predominant MP type in oysters, while polysulfones were more commonly detected in seawater. Notably, oysters from the Bohai Sea exhibited a higher abundance of MPs (13.62 ± 2.02 items/g) and estimated daily microplastic intake (EDI, 2.14 ± 0.26 items/g/kg·bw/day), indicating a greater potential health risk in the area. Meanwhile, seawater from the Yellow Sea displayed a higher level (193.0 ± 110.7 items/L), indicating a greater ecological risk in this region. Given the pervasiveness and abundance of PU and its high correlation with other MP types, we proposed PU as a promising indicator for monitoring and assessing the risk MP pollution in mariculture in China. These findings provide valuable insights into the extent and characteristics of MP pollution in farmed oysters and seawater in China.
Collapse
Affiliation(s)
- Huai Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093, China; Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| | - Xin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093, China
| | - Wenjin Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093, China
| | - Shenbo Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093, China
| | - Xi Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093, China
| | - Liusheng Lei
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093, China
| | - Fengxia Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Tural Affairs, Tianjin 300191, China.
| | - Yi Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
10
|
Hildebrandt L, Fischer M, Klein O, Zimmermann T, Fensky F, Siems A, Zonderman A, Hengstmann E, Kirchgeorg T, Pröfrock D. An analytical strategy for challenging members of the microplastic family: Particles from anti-corrosion coatings. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134173. [PMID: 38603906 DOI: 10.1016/j.jhazmat.2024.134173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/14/2024] [Accepted: 03/29/2024] [Indexed: 04/13/2024]
Abstract
Potentially hazardous particles from paints and functional coatings are an overlooked fraction of microplastic (MP) pollution since their accurate identification and quantification in environmental samples remains difficult. We have applied the most relevant techniques from the field of microplastic analysis for their suitability to chemically characterize anti-corrosion coatings containing a variety of polymer binders (LDIR, Raman and FTIR spectroscopy, Py-GC/MS) and inorganic additives (ICP-MS/MS). We present the basis of a possible toolbox to study the release and fate of coating particles in the (marine) environment. Our results indicate that, due to material properties, spectroscopic methods alone appear to be unsuitable for quantification of coating/paint particles and underestimate their environmental abundance. ICP-MS/MS and an optimized Py-GC/MS approach in combination with multivariate statistics enables a straightforward comparison of the multi-elemental and organic additive fingerprints of paint particles. The approach can improve the identification of unknown particles in environmental samples by an assignment to different typically used coating types. In future, this approach may facilitate allocation of emission sources of different environmental paint/coating particles. Indeed, future work will be required to tackle various remaining analytical challenges, such as optimized particle extraction/separation of environmental coating particles.
Collapse
Affiliation(s)
- L Hildebrandt
- Department for Inorganic Environmental Chemistry, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - M Fischer
- Federal Maritime and Hydrographic Agency (BSH), Marine Sciences Department, Wüstland 2, 22589 Hamburg, Germany
| | - O Klein
- Department for Inorganic Environmental Chemistry, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - T Zimmermann
- Department for Inorganic Environmental Chemistry, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - F Fensky
- Department for Inorganic Environmental Chemistry, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthacht, Germany; Hochschule für Angewandte Wissenschaften Hamburg, Faculty of Life Sciences, Ulmenliet 20, 20099 Hamburg, Germany
| | - A Siems
- Department for Inorganic Environmental Chemistry, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthacht, Germany; Universität Hamburg, Department of Chemistry, Institute for Inorganic and Applied Chemistry, Martin-Luther-King Platz 6, 20146 Hamburg, Germany
| | - A Zonderman
- Department for Inorganic Environmental Chemistry, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthacht, Germany; Universität Hamburg, Department of Biology, Marine Ecosystem and Fishery Science, Olbersweg 24, 22767 Hamburg, Germany
| | - E Hengstmann
- Federal Maritime and Hydrographic Agency (BSH), Marine Sciences Department, Wüstland 2, 22589 Hamburg, Germany
| | - T Kirchgeorg
- Federal Maritime and Hydrographic Agency (BSH), Marine Sciences Department, Wüstland 2, 22589 Hamburg, Germany
| | - D Pröfrock
- Department for Inorganic Environmental Chemistry, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthacht, Germany.
| |
Collapse
|
11
|
Piyathilake U, Lin C, Bolan N, Bundschuh J, Rinklebe J, Herath I. Exploring the hidden environmental pollution of microplastics derived from bioplastics: A review. CHEMOSPHERE 2024; 355:141773. [PMID: 38548076 DOI: 10.1016/j.chemosphere.2024.141773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/16/2024] [Accepted: 03/21/2024] [Indexed: 04/18/2024]
Abstract
Bioplastics might be an ecofriendly alternative to traditional plastics. However, recent studies have emphasized that even bioplastics can end up becoming micro- and nano-plastics due to their degradation under ambient environmental conditions. Hence, there is an urgent need to assess the hidden environmental pollution caused by bioplastics. However, little is known about the evolutionary trends of bibliographic data, degradation pathways, formation, and toxicity of micro- and nano-scaled bioplastics originating from biodegradable polymers such as polylactic acid, polyhydroxyalkanoates, and starch-based plastics. Therefore, the prime objective of the current review was to investigate evolutionary trends and the latest advancements in the field of micro-bioplastic pollution. Additionally, it aims to confront the limitations of existing research on microplastic pollution derived from the degradation of bioplastic wastes, and to understand what is needed in future research. The literature survey revealed that research focusing on micro- and nano-bioplastics has begun since 2012. This review identifies novel insights into microbioplastics formation through diverse degradation pathways, including photo-oxidation, ozone-induced degradation, mechanochemical degradation, biodegradation, thermal, and catalytic degradation. Critical research gaps are identified, including defining optimal environmental conditions for complete degradation of diverse bioplastics, exploring micro- and nano-bioplastics formation in natural environments, investigating the global occurrence and distribution of these particles in diverse ecosystems, assessing toxic substances released during bioplastics degradation, and bridging the disparity between laboratory studies and real-world applications. By identifying new trends and knowledge gaps, this study lays the groundwork for future investigations and sustainable solutions in the realm of sustainable management of bioplastic wastes.
Collapse
Affiliation(s)
- Udara Piyathilake
- Environmental Science Division, National Institute of Fundamental Studies (NIFS), Kandy, 2000, Sri Lanka
| | - Chuxia Lin
- Centre for Regional and Rural Futures, Faculty of Science, Engineering and Built Environment, Deakin University, Burwood, VIC, 3125, Australia
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Jochen Bundschuh
- School of Engineering, Faculty of Health, Engineering and Sciences, The University of Southern Queensland, West Street, 4350, QLD, Australia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany
| | - Indika Herath
- Centre for Regional and Rural Futures, Faculty of Science, Engineering and Built Environment, Deakin University, Waurn Ponds, VIC, 3216, Australia.
| |
Collapse
|
12
|
Jiang L, Ye Y, Han Y, Wang Q, Lu H, Li J, Qian W, Zeng X, Zhang Z, Zhao Y, Shi J, Luo Y, Qiu Y, Sun J, Sheng J, Huang H, Qian P. Microplastics dampen the self-renewal of hematopoietic stem cells by disrupting the gut microbiota-hypoxanthine-Wnt axis. Cell Discov 2024; 10:35. [PMID: 38548771 PMCID: PMC10978833 DOI: 10.1038/s41421-024-00665-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 03/01/2024] [Indexed: 04/01/2024] Open
Abstract
Microplastics (MPs) are contaminants ubiquitously found in the global biosphere that enter the body through inhalation or ingestion, posing significant risks to human health. Recent studies emerge that MPs are present in the bone marrow and damage the hematopoietic system. However, it remains largely elusive about the specific mechanisms by which MPs affect hematopoietic stem cells (HSCs) and their clinical relevance in HSC transplantation (HSCT). Here, we established a long-term MPs intake mouse model and found that MPs caused severe damage to the hematopoietic system. Oral gavage administration of MPs or fecal transplantation of microbiota from MPs-treated mice markedly undermined the self-renewal and reconstitution capacities of HSCs. Mechanistically, MPs did not directly kill HSCs but disrupted gut structure and permeability, which eventually ameliorated the abundance of Rikenellaceae and hypoxanthine in the intestine and inactivated the HPRT-Wnt signaling in bone marrow HSCs. Furthermore, administration of Rikenellaceae or hypoxanthine in mice as well as treatment of WNT10A in the culture system substantially rescued the MPs-induced HSC defects. Finally, we validated in a cohort of human patients receiving allogenic HSCT from healthy donors, and revealed that the survival time of patients was negatively correlated with levels of MPs, while positively with the abundance of Rikenellaceae, and hypoxanthine in the HSC donors' feces and blood. Overall, our study unleashes the detrimental roles and mechanisms of MPs in HSCs, which provides potential strategies to prevent hematopoietic damage from MPs and serves as a fundamental critique for selecting suitable donors for HSCT in clinical practice.
Collapse
Affiliation(s)
- Lingli Jiang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, China
| | - Yishan Ye
- Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, China
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yingli Han
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, China
| | - Qiwei Wang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, China
| | - Huan Lu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, China
| | - Jinxin Li
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, China
| | - Wenchang Qian
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, China
| | - Xin Zeng
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, China
| | - Zhaoru Zhang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, China
| | - Yanmin Zhao
- Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, China
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jimin Shi
- Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, China
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yi Luo
- Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, China
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yunfei Qiu
- Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, China
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Sun
- Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jinghao Sheng
- Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
| | - He Huang
- Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China.
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, China.
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Pengxu Qian
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China.
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, China.
| |
Collapse
|
13
|
López-Rosales A, Ferreiro B, Andrade J, Fernández-Amado M, González-Pleiter M, López-Mahía P, Rosal R, Muniategui-Lorenzo S. A reliable method to determine airborne microplastics using quantum cascade laser infrared spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169678. [PMID: 38159775 DOI: 10.1016/j.scitotenv.2023.169678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/11/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
The number of studies dealing with airborne microplastics (MPs) is increasing but sampling and sample treatment are not standardized, yet. Here, a fast and reliable method to characterize MPs is presented. It involves the study of two passive sampling devices to collect atmospheric bulk deposition (wet and dry deposition) and three digestion methods (two alkaline-oxidative and an oxidative) to treat the samples. The alkaline-oxidative method based on KOH and NaClO was selected for a mild organic matrix digestion. In addition, some operational parameters of a high-throughput quantum cascade laser-based infrared device (LDIR) were optimized: an effective automatic tiered approach to differentiate fibres from particles (>90 % success in validation) and a criterion to establish positive matches when comparing an unknown spectrum against the spectral database (proposed match index > 0.85). The procedural analytical recoveries were very good for particles (82-90 %) and slightly lower for fibres (62-73 %). Finally, the amount and type of MPs deposited at a sub-urban area NW Spain were evaluated. Most common polymers were Polyethylene (PE), Polypropylene (PP) and Polyethylene terephthalate (PET). The deposition rates ranged 98-1220 MP/m2/day, ca. 1.7 % of the total collected particles. More than 50 % of the total MPs deposited were in the 20-50 μm size range, whereas fibres were mostly in the 50-500 μm size range.
Collapse
Affiliation(s)
- Adrián López-Rosales
- Group of Applied Analytical Chemistry, University Institute of Environment, Universidade da Coruña, Campus da Zapateira s/n, E-15071 A Coruña, Spain
| | - Borja Ferreiro
- Group of Applied Analytical Chemistry, University Institute of Environment, Universidade da Coruña, Campus da Zapateira s/n, E-15071 A Coruña, Spain
| | - José Andrade
- Group of Applied Analytical Chemistry, University Institute of Environment, Universidade da Coruña, Campus da Zapateira s/n, E-15071 A Coruña, Spain
| | - María Fernández-Amado
- Group of Applied Analytical Chemistry, University Institute of Environment, Universidade da Coruña, Campus da Zapateira s/n, E-15071 A Coruña, Spain
| | - Miguel González-Pleiter
- Department of Biology, Faculty of Science, Universidad Autónoma de Madrid, E-28049, Madrid, Spain
| | - Purificación López-Mahía
- Group of Applied Analytical Chemistry, University Institute of Environment, Universidade da Coruña, Campus da Zapateira s/n, E-15071 A Coruña, Spain
| | - Roberto Rosal
- Department of Chemical Engineering, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Soledad Muniategui-Lorenzo
- Group of Applied Analytical Chemistry, University Institute of Environment, Universidade da Coruña, Campus da Zapateira s/n, E-15071 A Coruña, Spain.
| |
Collapse
|