1
|
Gill RL, Fleck R, Chau K, Westerhausen MT, Lockwood TE, Violi JP, Irga PJ, Doblin MA, Torpy FR. Fine particle pollution during megafires contains potentially toxic elements. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123306. [PMID: 38185362 DOI: 10.1016/j.envpol.2024.123306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/09/2024]
Abstract
Wildfires that raged across Australia during the 2019-2020 'Black Summer' produced an enormous quantity of particulate matter (PM) pollution, with plumes that cloaked many urban centres and ecosystems along the eastern seaboard. This has motivated a need to understand the magnitude and nature of PM exposure, so that its impact on both built and natural environments can be more accurately assessed. Here we present the potentially toxic fingerprint of PM captured by building heating, ventilation, and air conditioning filters in Sydney, Australia during the peak of the Wildfires, and from ambient urban emissions one year later (Reference period). Atmospheric PM and meteorological monitoring data were also assessed to determine the magnitude and source of high PM exposure. The wildfires were a major source of PM pollution in Sydney, exceeding the national standards on 19 % of days between November-February. Wildfire particles were finer and more spherical compared to Reference PM, with count median diameters of 892.1 ± 23.1 versus 1484.8 ± 96.7 nm (mean ± standard error). On an equal-mass basis, differences in potentially toxic elements were predominantly due to higher SO42--S (median 20.4 vs 4.7 mg g-1) and NO3--N (2.4 vs 1.2 mg g-1) in Wildfire PM, and higher PO43--P (10.4 vs 1.4 mg g-1) in Reference PM. Concentrations of remaining elements were similar or lower than Reference PM, except for enrichments to F-, Cl-, dissolved Mn, and particulate Mn, Co and Sb. Fractional solubilities of trace elements were similar or lower than Reference PM, except for enhanced Hg (12.1 vs 1.0 %) and greater variability in Cd, Hg and Mn solubility, which displayed upper quartiles exceeding that of Reference PM. These findings contribute to our understanding of human and ecosystem exposures to the toxic components of mixed smoke plumes, especially in regions downwind of the source.
Collapse
Affiliation(s)
- Raissa L Gill
- Productive Coasts, Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Plants and Environmental Quality Research Group, School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Robert Fleck
- Plants and Environmental Quality Research Group, School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Ky Chau
- Plants and Environmental Quality Research Group, School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Mika T Westerhausen
- Hyphenated Mass Spectrometry Laboratory, School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Thomas E Lockwood
- Hyphenated Mass Spectrometry Laboratory, School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Jake P Violi
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Peter J Irga
- Plants and Environmental Quality Research Group, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Martina A Doblin
- Productive Coasts, Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Sydney Institute of Marine Science, Mosman, NSW, 2088, Australia
| | - Fraser R Torpy
- Plants and Environmental Quality Research Group, School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|