1
|
Tanasovici RM, Gibran FZ, Dias GM. The proximity to marine infrastructure affects fish diversity, the occurrence of non-indigenous species, and the dynamic of the sessile communities. MARINE ENVIRONMENTAL RESEARCH 2025; 207:107086. [PMID: 40120425 DOI: 10.1016/j.marenvres.2025.107086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/28/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
Marine urbanization is changing coastal ecosystems. In this study, we examined how the proximity to recreational marinas influences the structure and recruitment of the sessile community, the diversity of fish, and predation pressure. Sessile communities on marinas supported 68 % more non-indigenous species than those farther from marine infrastructure. Conversely, native species occupied more space in natural habitats, where the diversity of fish was greater. Predation did not influence the diversity or structure of the sessile community, regardless of the habitat type. Nevertheless, predation pressure may be underestimated in artificial habitats due to the lack of connection between platforms and the seafloor. Sessile recruitment tended to be more abundant in artificial habitats. Our findings indicate that even when substrate composition, orientation, and connectivity to the seabed are standardized, proximity to marine infrastructure increases the prevalence of non-indigenous sessile species and diminishes the diversity of potential predatory fish, thereby altering the dynamics of sessile communities.
Collapse
Affiliation(s)
- Rodrigo M Tanasovici
- Grupo de Ecologia Experimental Marinha, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Alameda da Universidade, s/n - Bairro Anchieta, São Bernardo do Campo, CEP: 09606-045, SP, Brazil
| | - Fernando Z Gibran
- Grupo de Ecologia Experimental Marinha, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Alameda da Universidade, s/n - Bairro Anchieta, São Bernardo do Campo, CEP: 09606-045, SP, Brazil
| | - Gustavo M Dias
- Grupo de Ecologia Experimental Marinha, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Alameda da Universidade, s/n - Bairro Anchieta, São Bernardo do Campo, CEP: 09606-045, SP, Brazil.
| |
Collapse
|
2
|
Chebaane S, Engelen AH, Pais MP, Silva R, Gizzi F, Triay-Portella R, Florido M, Monteiro JG. Evaluating fish foraging behaviour on non-indigenous Asparagopsis taxiformis using a remote video foraging system. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106766. [PMID: 39357202 DOI: 10.1016/j.marenvres.2024.106766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
The proliferation of pest and invasive marine macroalgae threatens coastal ecosystems, with biotic interactions, including direct effects such as grazing and indirect effects such as the trophic cascades, where one species indirectly affects another through its interactions with a third species, play a critical role in determining the resistance of local communities to these invasions. This study examines the foraging behaviour and preference of native fish communities toward native (Halopteris scoparia, Sargassum vulgare) and non-indigenous (Asparagopsis taxiformis) macroalgae using the Remote Video Foraging System (RVFS). Fifty-four weedpops were deployed across three locations to present these macroalgae, while associated epifaunal assemblages were also collected. Video analysis revealed that four common fish species displayed preference towards native macroalgae, possibly due to by the presence of zoobenthos rather than herbivory. This observation suggests that these fish species identified the macroalgae as a habitat that harboured their preferred food items. In contrast, A. taxiformis was consistently avoided, suggesting limited integration into the local food web. Site-specific variations in fish-macroalgae interactions and epifaunal diversity highlighted the complexity of these dynamics. This study contributes to understanding of the ecological implications of invasive macroalgae and supports the use of RVFS as a tool for assessing local biotic resistance against non-indigenous species in coastal ecosystems globally.
Collapse
Affiliation(s)
- Sahar Chebaane
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Funchal, Portugal; Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Portugal; Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | | | - Miguel Pessanha Pais
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Portugal; MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, Portugal
| | - Rodrigo Silva
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Funchal, Portugal
| | - Francesca Gizzi
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Funchal, Portugal
| | - Raül Triay-Portella
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Funchal, Portugal; Grupo en Biodiversidad y Conservación, IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Marta Florido
- Laboratorio de Biología Marina, Departamento de Zoología, Facultad de Biología de la Universidad de Sevilla, Av. de la Reina Mercedes, 41012, Sevilla, Spain
| | - João Gama Monteiro
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Funchal, Portugal; Faculty of Life Sciences, University of Madeira, 9000, Funchal, Portugal
| |
Collapse
|
3
|
Muñoz-Duque S, Fonseca PJ, Quintella B, Monteiro JG, Fernandez M, Silva R, Vieira M, Amorim MCP. Acoustic fish community in the Madeira Archipelago (North Atlantic Ocean): Characterization of sound diversity and daily patterns. MARINE ENVIRONMENTAL RESEARCH 2024; 199:106600. [PMID: 38875901 DOI: 10.1016/j.marenvres.2024.106600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
Marine ecosystems are increasingly subjected to anthropogenic pressures, which demands urgent monitoring plans. Understanding soundscapes can offer unique insights into the ocean status providing important information and revealing different sounds and their sources. Fishes can be prominent soundscape contributors, making passive acoustic monitoring (PAM) a potential tool to detect the presence of vocal fish species and to monitor changes in biodiversity. The major goal of this research was to provide a first reference of the marine soundscapes of the Madeira Archipelago focusing on fish sounds, as a basis for a long-term PAM program. Based on the literature, 102 potentially vocal and 35 vocal fish species were identified. Additionally 43 putative fish sound types were detected in audio recordings from two marine protected areas (MPAs) in the Archipelago: the Garajau MPA and the Desertas MPA. The Garajau MPA exhibited higher fish vocal activity, a greater variety of putative fish sound types and higher fish sound diversity. Lower abundance of sounds was found at night at both MPAs. Acoustic activity revealed a clear distinction between diurnal and nocturnal fish groups and demonstrated daily patterns of fish sound activity, suggesting temporal and spectral partitioning of the acoustic space. Pomacentridae species were proposed as candidates for some of the dominant sound types detected during the day, while scorpionfishes (Scorpaena spp.) were proposed as sources for some of the dominant nocturnal fish sounds. This study provides an important baseline about this community acoustic behaviour and is a valuable steppingstone for future non-invasive and cost-effective monitoring programs in Madeira.
Collapse
Affiliation(s)
- Sebastian Muñoz-Duque
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal; IMBRSEA, Ghent University, 9000, Ghent, Belgium.
| | - Paulo J Fonseca
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal; cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, 1749-016, Lisboa, Portugal
| | - Bernardo Quintella
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal; MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - João Gama Monteiro
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), 9020-105, Funchal, Portugal; Faculty of Life Sciences, University of Madeira, 9020-105, Funchal, Portugal
| | - Marc Fernandez
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), 9020-105, Funchal, Portugal; Faculty of Life Sciences, University of Madeira, 9020-105, Funchal, Portugal
| | - Rodrigo Silva
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), 9020-105, Funchal, Portugal; Faculty of Life Sciences, University of Madeira, 9020-105, Funchal, Portugal
| | - Manuel Vieira
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal; MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - M Clara P Amorim
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal; MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| |
Collapse
|