1
|
Song C, You L, Tang J, Wang S, Ji C, Zhan J, Su B, Li F, Wu H. Gene biomarkers in estuarine oysters indicate pollution profiles of metals, brominated flame retardants, and poly- and perfluoroalkyl substances in and near the Laizhou Bay. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136484. [PMID: 39536349 DOI: 10.1016/j.jhazmat.2024.136484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/31/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
The Laizhou Bay (LZB) is of ecological and fishery importance. The discharge of effluents containing numerous pollutants into the LZB via rivers poses significant risks to ecosystem and human health. Estuarine biomonitoring is therefore crucial for assessing the contribution of rivers to coastal pollution and their impacts on species. Estuarine oyster Crassostrea gigas is a preferable bioindicator to pollution conditions. This study measured accumulation of contaminants and expression levels of gene biomarkers in the LZB and Northern Shandong Peninsula (NSP) oysters. The LZB oysters accumulated higher levels of brominated flame retardants (BFRs) and poly- and perfluoroalkyl substances (PFAS), while NSP oysters exhibited greater accumulation of heavy metals. Decabromodiphenyl ethane was the dominant BFR, while perfluorooctanoic acid and perfluoro-2-methoxyacetic acid were the dominant PFASs in oysters. The expression of gene biomarkers effectively distinguished the LZB and NSP oysters, with CYP2 subfamilies expression correlating with BFRs and PFASs and metallothionein expression indicating heavy metals. The reproductive endocrine and neuroendocrine-immune systems in oysters might be the targets of BFRs and heavy metal pollution, respectively. The negative correlation between contaminant accumulation and gene expression might be explained by adaptive evolution, emphasizing the need to consider genetic diversity in ecological risk assessments.
Collapse
Affiliation(s)
- Changlin Song
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Liping You
- Shandong Key Laboratory of Marine Ecological Restoration, Observation and Research Station of Laizhou Bay Marine Ecosystem, MNR, Shandong Marine Resources and Environment Research Institute, No. 216 Changjiang Road, Yantai 264006, China
| | - Jianhui Tang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China
| | - Shuang Wang
- School of Ocean, Yantai University, Yantai 264005, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China.
| | - Junfei Zhan
- Key Laboratory of Ecological Restoration and Conservation of Coastal Wetlands in Universities of Shandong, The Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai 264025, PR China
| | - Bo Su
- Shandong Key Laboratory of Marine Ecological Restoration, Observation and Research Station of Laizhou Bay Marine Ecosystem, MNR, Shandong Marine Resources and Environment Research Institute, No. 216 Changjiang Road, Yantai 264006, China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China
| |
Collapse
|
2
|
Dessì F, Varoni MV, Baralla E, Nieddu M, Pasciu V, Piras G, Lorenzoni G, Demontis MP. Contaminants of Emerging Concern: Antibiotics Research in Mussels from the Coasts of the Tyrrhenian Sea (Sardinia, Italy). Animals (Basel) 2024; 14:1205. [PMID: 38672353 PMCID: PMC11047641 DOI: 10.3390/ani14081205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Contaminants of emerging concern (CECs) are compounds found in several environmental compartments whose ubiquitous presence can cause toxicity for the entire ecosystem. Several personal care products, including antibiotics, have entered this group of compounds, constituting a major global threat. It is essential to develop simple and reliable methods by which to quantify these contaminants in several matrices. In this work, mussels were chosen as sentinel organisms to assess environmental pollution and the safety of bivalve mollusk consumption according to the "One Health perspective". A liquid chromatographic tandem mass spectrometry method (LC-MS/MS) was developed for the quantification of two macrolides, erythromycin (ERY) and azithromycin (AZI), in mussels. This new method was validated according to international guidelines, showing high selectivity, good recoveries (>60% for both of them), sensitivity, and precision. The method was successfully applied for ERY and AZI research in mussels farmed along the Sardinian coasts (Italy), demonstrating itself to be useful for routine analysis by competent authorities. The tested macrolides were not determined in the analyzed sites at concentrations above the limits of detection (LODs). These results demonstrate the food safety of mussels (as concerns the studied antibiotics) and a negligible amount of pollution derived from these drugs in the studied area.
Collapse
Affiliation(s)
- Filomena Dessì
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (F.D.); (M.V.V.); (V.P.); (M.P.D.)
| | - Maria Vittoria Varoni
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (F.D.); (M.V.V.); (V.P.); (M.P.D.)
| | - Elena Baralla
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (F.D.); (M.V.V.); (V.P.); (M.P.D.)
| | - Maria Nieddu
- Department of Medicine Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy;
| | - Valeria Pasciu
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (F.D.); (M.V.V.); (V.P.); (M.P.D.)
| | - Gabriella Piras
- Veterinary Public Health Institute of Sardinia, 07100 Sassari, Italy; (G.P.); (G.L.)
| | - Giuseppa Lorenzoni
- Veterinary Public Health Institute of Sardinia, 07100 Sassari, Italy; (G.P.); (G.L.)
| | - Maria Piera Demontis
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (F.D.); (M.V.V.); (V.P.); (M.P.D.)
| |
Collapse
|
3
|
Araújo DF, Ponzevera E, Jeong H, Briant N, Le Monier P, Bruzac S, Sireau T, Pellouin-Grouhel A, Knoery J, Brach-Papa C. Seasonal and multi-decadal zinc isotope variations in blue mussels from two sites with contrasting zinc contamination levels. CHEMOSPHERE 2024; 353:141572. [PMID: 38430941 DOI: 10.1016/j.chemosphere.2024.141572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/05/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Zinc (Zn) isotope compositions in soft mussel tissues help identify internal biological processes and track coastal Zn sources in coastal environments, thus aiding in managing marine metal pollution. This study investigated the seasonal and multi-decadal Zn isotope compositions of blue mussels (genus Mytilus) from two French coastal sites with contrasting Zn environmental contamination. Concurrently, we characterized the isotope ratios of sediments and plankton samples at each site to understand the associations between organisms and abiotic compartments. Our primary objective was to determine whether these isotope compositions trace long-term anthropogenic emission patterns or if they reflect short-term biological processes. The multi-decadal isotope profiles of mussels in the Loire Estuary and Toulon Bay showed no isotope variations, implying the enduring stability of the relative contributions of natural and anthropogenic Zn sources over time. At seasonal scales, Zn isotope ratios were also constant; hence, isotope effects related to spawning and body growth were not discernible. The multi-compartmental analysis between the sites revealed that Toulon Bay exhibits a remarkably lower Zn isotope ratio across all studied matrices, suggesting the upward transfer of anthropogenic Zn in the food web. In contrast, the Zn isotope variability observed for sediments and organisms from the Loire Estuary fell within the natural baseline of this element. In both sites, adsorptive geogenic material carrying significant amounts of Zn masks the biological isotope signature of plankton, making it difficult to determine whether the Zn isotope ratio in mussels solely reflects the planktonic diet or if it is further modified by biological homeostasis. In summary, Zn isotope ratios in mussels offer promising avenues for delineating source-specific isotope signatures, contingent upon a comprehensive understanding of the isotope fractionation processes associated with the trophic transfer of this element through the plankton.
Collapse
Affiliation(s)
- Daniel F Araújo
- Ifremer, CCEM- Unité Contamination Chimique des Écosystèmes Marins, F-F-44300, Nantes, France.
| | - Emmanuel Ponzevera
- Ifremer, CCEM- Unité Contamination Chimique des Écosystèmes Marins, F-F-44300, Nantes, France
| | - Hyeryeong Jeong
- Ifremer, CCEM- Unité Contamination Chimique des Écosystèmes Marins, F-F-44300, Nantes, France
| | - Nicolas Briant
- Ifremer, CCEM- Unité Contamination Chimique des Écosystèmes Marins, F-F-44300, Nantes, France
| | - Pauline Le Monier
- Ifremer, CCEM- Unité Contamination Chimique des Écosystèmes Marins, F-F-44300, Nantes, France
| | - Sandrine Bruzac
- Ifremer, CCEM- Unité Contamination Chimique des Écosystèmes Marins, F-F-44300, Nantes, France
| | - Teddy Sireau
- Ifremer, CCEM- Unité Contamination Chimique des Écosystèmes Marins, F-F-44300, Nantes, France
| | - Anne Pellouin-Grouhel
- Ifremer, CCEM- Unité Contamination Chimique des Écosystèmes Marins, F-F-44300, Nantes, France
| | - Joël Knoery
- Ifremer, CCEM- Unité Contamination Chimique des Écosystèmes Marins, F-F-44300, Nantes, France
| | - Christophe Brach-Papa
- Ifremer, LERPAC- Unité Littoral- Laboratoire Environnement Ressources Provence-Azur-Corse, F-83507, La Seyne-sur-Mer, France
| |
Collapse
|