1
|
Sandhu A, Espin-Garcia O, Rockel JS, Lively S, Perry K, Mohamed NN, Raja Rampersaud Y, Perruccio AV, Robin Poole A, Gandhi R, Kapoor M. Association of synovial fluid and urinary C2C-HUSA levels with surgical outcomes post-total knee arthroplasty. Osteoarthritis Cartilage 2024; 32:98-107. [PMID: 37805006 DOI: 10.1016/j.joca.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/14/2023] [Accepted: 09/30/2023] [Indexed: 10/09/2023]
Abstract
OBJECTIVES After total knee arthroplasty (TKA), ∼30% of knee osteoarthritis (KOA) patients show little symptomatic improvement. Earlier studies have correlated urinary (u) type 2 collagen C terminal cleavage peptide assay (C2C-HUSA), which detects a fragment of cartilage collagen breakdown, with KOA progression. This study determines whether C2C levels in urine, synovial fluid, or their ratio, are associated with post-surgical outcomes. METHODS From a large sample of 489 subjects, diagnosed with primary KOA undergoing TKA, Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain and function scores were collected at baseline (time of surgery) and one-year post-TKA. Baseline urine (u) and synovial fluid (sf) were analysed using the IBEX-C2C-HUSA assay, with higher values indicating higher amounts of cartilage degradation. For urine, results were normalised to creatinine. Furthermore, subjects' changes in WOMAC scores were categorised based on percent reduction in pain or improvement in function, compared to baseline, such that >66.7%, >33.3 to ≤66.7%, and ≤33.3% denoted "strong", "moderate" and "mild/worse" responses, respectively. Associations of individual biofluid C2C-HUSA levels, or their ratio, with change in WOMAC pain and function scores up to one-year post-TKA, or category of change, were analysed by linear, logistic, or cumulative odds models. RESULTS Higher baseline uC2C-HUSA levels or a lower ratio of baseline sfC2C-HUSA to uC2C-HUSA were associated with improvements in WOMAC pain by linear multivariable modelling [odds ratio -0.40 (95% confidence interval -0.76, -0.05) p = 0.03; 0.36 (0.01, 0.71), p = 0.04, respectively], while sfC2C-HUSA alone was not. However, lower ratios of sfC2C-HUSA to uC2C-HUSA were associated with improvements in WOMAC function [1.37 (0.18, 2.55), p = 0.02], while sfC2C-HUSA and uC2C-HUSA alone were not. Lower ratios of sfC2C-HUSA to uC2C-HUSA were also associated with an increased likelihood of a subject being categorised in a group where TKA was beneficial in both univariable [pain, 0.81 (0.68, 0.96), p = 0.02; function, 0.92 (0.85, 0.99), p = 0.035] and multivariable [pain, 0.81 (0.68, 0.97) p = 0.02; function, 0.92 (0.85, 1.00), p = 0.043] ordinal modelling, while sfC2C-HUSA and uC2C-HUSA alone were not. CONCLUSIONS Overall, ratios of baseline sfC2C-HUSA to uC2C-HUSA, and baseline uC2C-HUSA, may play an important role in studying post-TKA surgical outcomes.
Collapse
Affiliation(s)
- Amit Sandhu
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Osvaldo Espin-Garcia
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Epidemiology and Biostatistics, Western University, London, Ontario, Canada; Dalla Lana School of Public Health and Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Jason S Rockel
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Starlee Lively
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Kimberly Perry
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Nizar N Mohamed
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Y Raja Rampersaud
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Anthony V Perruccio
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - A Robin Poole
- Department of Surgery, Faculty of Medicine and Health Sciences, McGill University, Montréal, Quebec, Canada
| | - Rajiv Gandhi
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Mohit Kapoor
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Rapp AE, Zaucke F. Cartilage extracellular matrix-derived matrikines in osteoarthritis. Am J Physiol Cell Physiol 2023; 324:C377-C394. [PMID: 36571440 DOI: 10.1152/ajpcell.00464.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Osteoarthritis (OA) is among the most frequent diseases of the musculoskeletal system. Degradation of cartilage extracellular matrix (ECM) is a hallmark of OA. During the degradation process, intact/full-length proteins and proteolytic fragments are released which then might induce different downstream responses via diverse receptors, therefore leading to different biological consequences. Collagen type II and the proteoglycan aggrecan are the most abundant components of the cartilage ECM. However, over the last decades, a large number of minor components have been identified and for some of those, a role in the manifold processes associated with OA has already been demonstrated. To date, there is still no therapy able to halt or cure OA. A better understanding of the matrikine landscape occurring with or even preceding obvious degenerative changes in joint tissues is needed and might help to identify molecules that could serve as biomarkers, druggable targets, or even be blueprints for disease modifying drug OA drugs. For this narrative review, we screened PubMed for relevant literature in the English language and summarized the current knowledge regarding the function of selected ECM molecules and the derived matrikines in the context of cartilage and OA.
Collapse
Affiliation(s)
- Anna E Rapp
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
3
|
Nutraceutical Activity in Osteoarthritis Biology: A Focus on the Nutrigenomic Role. Cells 2020; 9:cells9051232. [PMID: 32429348 PMCID: PMC7291002 DOI: 10.3390/cells9051232] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a disease associated to age or conditions that precipitate aging of articular cartilage, a post-mitotic tissue that remains functional until the failure of major homeostatic mechanisms. OA severely impacts the national health system costs and patients' quality of life because of pain and disability. It is a whole-joint disease sustained by inflammatory and oxidative signaling pathways and marked epigenetic changes responsible for catabolism of the cartilage extracellular matrix. OA usually progresses until its severity requires joint arthroplasty. To delay this progression and to improve symptoms, a wide range of naturally derived compounds have been proposed and are summarized in this review. Preclinical in vitro and in vivo studies have provided proof of principle that many of these nutraceuticals are able to exert pleiotropic and synergistic effects and effectively counteract OA pathogenesis by exerting both anti-inflammatory and antioxidant activities and by tuning major OA-related signaling pathways. The latter are the basis for the nutrigenomic role played by some of these compounds, given the marked changes in the transcriptome, miRNome, and methylome. Ongoing and future clinical trials will hopefully confirm the disease-modifying ability of these bioactive molecules in OA patients.
Collapse
|
4
|
Abstract
Recent advances in the field of glycobiology have exposed a multitude of biological processes that are controlled or influenced by proteoglycans, in both physiological and pathological conditions ranging from early embryonic development, inflammation, and fibrosis to tumor invasion and metastasis. The first part of this article reviews the biosynthesis of proteoglycans and their multifunctional roles in health and disease; the second part of this review focuses on their putative roles in peritoneal homeostasis and peritoneal inflammation and fibrosis in the context of chronic peritoneal dialysis and peritonitis.
Collapse
Affiliation(s)
- Susan Yung
- Department of Medicine, University of Hong Kong, Hong Kong
| | - Tak Mao Chan
- Department of Medicine, University of Hong Kong, Hong Kong
| |
Collapse
|
5
|
Kumar A, Dutta Choudhury M, Ghosh P, Palit P. Discoidin domain receptor 2: An emerging pharmacological drug target for prospective therapy against osteoarthritis. Pharmacol Rep 2019; 71:399-408. [DOI: 10.1016/j.pharep.2019.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/27/2018] [Accepted: 01/14/2019] [Indexed: 11/30/2022]
|
6
|
Tanaka N, Tashiro T, Katsuragawa Y, Sawabe M, Furukawa H, Fukui N. Expression of minor cartilage collagens and small leucine rich proteoglycans may be relatively reduced in osteoarthritic cartilage. BMC Musculoskelet Disord 2019; 20:232. [PMID: 31103042 PMCID: PMC6525975 DOI: 10.1186/s12891-019-2596-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/29/2019] [Indexed: 11/12/2022] Open
Abstract
Background In osteoarthritis (OA), cartilage matrix is lost despite vigorous chondrocyte anabolism. In this study, we attempted to determine whether altered matrix synthesis is involved in this paradox in disease progression through gene expression analysis and ultrastructural analysis of collagen fibrils within the cartilage matrix. Methods Cartilage tissues were obtained from 29 end-stage OA knees and 11 control knees. First, cDNA microarray analysis was performed and the expression of 9 genes involved in collagen fibrillogenesis was compared between OA and control cartilages. Then their expression was investigated in further detail by a quantitative polymerase chain reaction (qPCR) analysis combined with laser capture microdissection. Finally, collagen fibril formation was compared between OA and control cartilage by transmission electron microscopy. Results The result of the microarray analysis suggested that the expression of type IX and type XI collagens and fibrillogenesis-related small leucine-rich proteoglycans (SLRPs) may be reduced in OA cartilage relative to the type II collagen expression. The qPCR analysis confirmed these results and further indicated that the relative reduction in the minor collagen and SLRP expression may be more obvious in degenerated areas of OA cartilage. An ultrastructural analysis suggested that thicker collagen fibrils may be formed by OA chondrocytes possibly through reduction in the minor collagen and SLRP expression. Conclusions This may be the first study to report the possibility of altered collagen fibrillogenesis in OA cartilage. Disturbance in collagen fibril formation may be a previously unidentified mechanism underlying the loss of cartilage matrix in OA. Electronic supplementary material The online version of this article (10.1186/s12891-019-2596-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nobuho Tanaka
- Clinical Research Center, National Hospital Organization Sagamihara Hospital, 18-1 Sakuradai, Sagamihara, Kanagawa, 252-0315, Japan
| | - Toshiyuki Tashiro
- Department of Orthopaedic Surgery, Tokyo Yamate Medical Center, 3-22-1 Hyakuninncyou, Shinjyuku-ku, Tokyo, 169-0073, Japan
| | - Yozo Katsuragawa
- Department of Orthopaedic Surgery, Center Hospital of the National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjyuku-ku, Tokyo, 162-8655, Japan
| | - Motoji Sawabe
- Department of Molecular Pathology, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hiroshi Furukawa
- Laboratory for Molecular and Genetic Epidemiology, School of Medicine, The University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Naoshi Fukui
- Clinical Research Center, National Hospital Organization Sagamihara Hospital, 18-1 Sakuradai, Sagamihara, Kanagawa, 252-0315, Japan. .,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
7
|
Gao L, Orth P, Cucchiarini M, Madry H. Effects of solid acellular type-I/III collagen biomaterials on in vitro and in vivo chondrogenesis of mesenchymal stem cells. Expert Rev Med Devices 2018; 14:717-732. [PMID: 28817971 DOI: 10.1080/17434440.2017.1368386] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Type-I/III collagen membranes are advocated for clinical use in articular cartilage repair as being able of inducing chondrogenesis, a technique termed autologous matrix-induced chondrogenesis (AMIC). Area covered: The current in vitro and translational in vivo evidence for chondrogenic effects of solid acellular type-I/III collagen biomaterials. Expert commentary: In vitro, mesenchymal stem cells (MSCs) adhere to the fibers of the type-I/III collagen membrane. No in vitro study provides evidence that a type-I/III collagen matrix alone may induce chondrogenesis. Few in vitro studies compare the effects of type-I and type-II collagen scaffolds on chondrogenesis. Recent investigations suggest better chondrogenesis with type-II collagen scaffolds. A systematic review of the translational in vivo data identified one long-term study showing that covering of cartilage defects treated by microfracture with a type-I/III collagen membrane significantly enhanced the repair tissue volume compared with microfracture alone. Other in vivo evidence is lacking to suggest either improved histological structure or biomechanical function of the repair tissue. Taken together, there is a paucity of in vitro and preclinical in vivo evidence supporting the concept that solid acellular type-I/III collagen scaffolds may be superior to classical approaches to induce in vitro or in vivo chondrogenesis of MSCs.
Collapse
Affiliation(s)
- Liang Gao
- a Lehrstuhl für Experimentelle Orthopädie und Arthroseforschung , Saarland University , Homburg/Saar , Germany
| | - Patrick Orth
- a Lehrstuhl für Experimentelle Orthopädie und Arthroseforschung , Saarland University , Homburg/Saar , Germany
| | - Magali Cucchiarini
- a Lehrstuhl für Experimentelle Orthopädie und Arthroseforschung , Saarland University , Homburg/Saar , Germany
| | - Henning Madry
- a Lehrstuhl für Experimentelle Orthopädie und Arthroseforschung , Saarland University , Homburg/Saar , Germany
| |
Collapse
|
8
|
Deferoxamine Suppresses Collagen Cleavage and Protease, Cytokine, and COL10A1 Expression and Upregulates AMPK and Krebs Cycle Genes in Human Osteoarthritic Cartilage. Int J Rheumatol 2016; 2016:6432867. [PMID: 28042296 PMCID: PMC5155111 DOI: 10.1155/2016/6432867] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/19/2016] [Accepted: 10/25/2016] [Indexed: 12/27/2022] Open
Abstract
This study reports the effects of the iron chelator deferoxamine (DFO) on collagen cleavage, inflammation, and chondrocyte hypertrophy in relation to energy metabolism-related gene expression in osteoarthritic (OA) articular cartilage. Full-depth explants of human OA knee articular cartilage from arthroplasty were cultured with exogenous DFO (1–50 μM). Type II collagen cleavage and phospho-adenosine monophosphate-activated protein kinase (pAMPK) concentrations were measured using ELISAs. Gene expression studies employed real-time PCR and included AMPK analyses in PBMCs. In OA explants collagen cleavage was frequently downregulated by 10–50 μM DFO. PCR analysis of 7 OA patient cartilages revealed that 10 μM DFO suppressed expression of MMP-1, MMP-13, IL-1β, and TNFα and a marker of chondrocyte hypertrophy, COL10A1. No changes were observed in the expression of glycolysis-related genes. In contrast, expressions of genes associated with the mitochondrial Krebs cycle (TCA), AMPK, HIF1α, and COL2A1 were upregulated. AMPK gene expression was reduced in OA cartilage and increased in PBMCs from the same patients compared to healthy controls. Our studies demonstrate that DFO is capable of suppressing excessive collagenase-mediated type II collagen cleavage in OA cartilage and reversing phenotypic changes. The concomitant upregulation of proanabolic TCA-related gene expressions points to a potential for availability of energy generating substrates required for matrix repair by end-stage OA chondrocytes. This might normally be prevented by high whole-body energy requirements indicated by elevated AMPK expression in PBMCs of OA patients.
Collapse
|
9
|
Zhang F, Sun X, Yu H, Yang X, Song M, Han Y, Li Y, Zhu Y. Effects of aluminum trichloride on the cartilage stimulatory growth factors in rats. Biometals 2016; 30:143-150. [PMID: 27885436 DOI: 10.1007/s10534-016-9982-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 11/15/2016] [Indexed: 01/02/2023]
Abstract
Aluminum (Al) is considered to be a potentially toxic metal and inhibits cartilage formation. Transforming growth factor β1 (TGF-β1) and bone morphogenetic protein 2 (BMP-2) are cartilage stimulatory growth factors, which play important roles in regulating the cartilage formation. To investigate the effects of aluminum trichloride (AlCl3) on the regulation of cartilage formation. Eighty Wistar rats were orally exposed to 0 (control group), 0.4 g/L (low-dose group), 0.8 g/L (mid-dose group) and 1.6 g/L (high-dose group) AlCl3 for 120 days, respectively. The rats body weight were decreased, the cartilage histological structure were disrupted, the cartilage and serum contents of Al and the serum level of C-telopeptide of type II collagen were all increased, the serum level of type II collagen (Col II) and alkaline phosphatase (ALP), and the mRNA expressions of TGF-β1, BMP-2, ALP and Col II were all decreased in the AlCl3-treated groups compared with those in control group. These results indicate that AlCl3 inhibits the cartilage formation through inhibition of the cartilage stimulatory growth factors expressions.
Collapse
Affiliation(s)
- Fan Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xudong Sun
- College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Hongyan Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xu Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Miao Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yanfei Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yanfei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| | - Yanzhu Zhu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, 130112, China.
| |
Collapse
|
10
|
Anti-ADAMTS5 monoclonal antibodies: implications for aggrecanase inhibition in osteoarthritis. Biochem J 2016; 473:e1-4. [PMID: 26657033 DOI: 10.1042/bj20151072] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The extracellular matrix of articular cartilage is structurally specialized for efficient absorption of mechanical impact. In particular, giant aggregates of the large chondroitin sulfate proteoglycan, aggrecan, with the glycosaminoglycan, hyaluronan, allow cartilage to resist compressive load. Proteolysis of aggrecan by members of the proteinase family ADAMTS (A disintegrin-like and metalloproteinase domain with thrombospondin type 1 motif), was identified as an early step in the inexorable destruction of cartilage in osteoarthritis (OA). Of the investigated proteinases, ADAMTS5 has emerged as a principal mediator of aggrecan loss in OA, convincingly so in mouse models, and with high probability in humans. ADAMTS5 has a bipartite organization, comprising a proteinase domain and an ancillary domain containing exosites for interaction with aggrecan and other substrates. In a recent issue of this journal, Santamaria et al. characterized anti-ADAMTS5 monoclonal antibodies isolated from a phage display library. By blocking the catalytic site of the ADAMTS5 immunogen with a synthetic inhibitor, the authors of the paper biased selection of antibodies to the ancillary domain. This work, together with other antibodies targeting ADAMTS5, offers diverse, high-affinity and, as far as can be determined, selective aggrecanase inhibitors. Mapping of their epitopes provided novel insights into ADAMTS5 interactions with aggrecan. These monoclonal antibodies deserve continued investigation for potential arthritis therapy, although their successful use will require a comprehensive understanding of the physiological roles of ADAMTS5, and its regulation, intrinsic properties and intermolecular interactions.
Collapse
|
11
|
Zhang S, Zhong Y, Li R, Wang W, Zeng L, Wang Z, Jia P, Wu R. Experimental chondrocyte hypertrophy is promoted by the activation of discoidin domain receptor 2. Mol Med Rep 2014; 10:1543-8. [PMID: 24938620 DOI: 10.3892/mmr.2014.2340] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 05/14/2014] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to assess the association between chondrocytes and the extracellular matrix (ECM), and determine whether this contributes to osteoarthritis (OA). Chondrocyte hypertrophy was measured in articular cartilage samples from early-stage OA patients. In addition, rat chondrocytes were cultured and divided into four groups (A to D): Group A was an untreated control group, group B was incubated with chicken collagen II, group C was transfected with the discoidin domain of discoidin domain receptor-2 (DDR2) and group D was transfected with full‑length DDR2. The expression levels of DDR2 and hypertrophic markers in each group were then measured by quantitative polymerase chain reaction (qPCR) and western blot analyses. Chondrocyte hypertrophy was identified in samples of early‑stage OA patients. In rat chondrocyte cultures, the relative mRNA and protein expression levels of hypertrophic markers were determined as: Group D > B > C > A. In conclusion, transfection with DDR2 induced the expression of hypertrophic markers, as assessed by qPCR and western blot analyses. DDR2 therefore promoted chondrocyte hypertrophy and terminal differentiation.
Collapse
Affiliation(s)
- Sihan Zhang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yu Zhong
- The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Rongheng Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wei Wang
- Chongqing Cancer Hospital, Chongqing 400030, P.R. China
| | - Li Zeng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zheming Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ping Jia
- The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Rui Wu
- The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
12
|
Yasuda T. Nuclear factor-κB activation by type II collagen peptide in articular chondrocytes: its inhibition by hyaluronan via the receptors. Mod Rheumatol 2014. [DOI: 10.3109/s10165-012-0804-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
YASUDA T. Type II collagen peptide stimulates Akt leading to nuclear factor-κB activation: Its inhibition by hyaluronan. Biomed Res 2014; 35:193-9. [DOI: 10.2220/biomedres.35.193] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Tiaden AN, Richards PJ. The emerging roles of HTRA1 in musculoskeletal disease. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1482-8. [PMID: 23499460 DOI: 10.1016/j.ajpath.2013.02.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 01/28/2013] [Accepted: 02/01/2013] [Indexed: 01/05/2023]
Abstract
High-temperature requirement serine protease A1 (HTRA1) is one of four known proteases belonging to the broadly conserved family of HTRA proteins. Although it was originally considered as representing an important modulator of tumorigenesis, an increasing number of reports have suggested that its influence on human disease may extend beyond cancer. HTRA1 has the capacity to degrade numerous extracellular matrix proteins, and as such, its potential involvement in diseases of the musculoskeletal system has been gaining increased attention. Musculoskeletal disease constitutes a wide variety of degenerative conditions that can manifest themselves in different ways such as joint and back pain, as well as deficiencies in skeletal bone quality, and ultimately result in significant suffering and reduced quality of life. Convincing data now exist to support a detrimental role for HTRA1 in the pathogenesis of joint and intervertebral disk degeneration. However, the function of HTRA1 in other closely related musculoskeletal diseases affecting bone and muscle remains unclear and largely unexplored. To help set the stage for future research, we discuss here some of the recent advances in our understanding of the role played by HTRA1 in musculoskeletal pathology.
Collapse
Affiliation(s)
- André Nicki Tiaden
- Bone and Stem Cell Research Group, Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
15
|
Poulet B, Ulici V, Stone TC, Pead M, Gburcik V, Constantinou E, Palmer DB, Beier F, Timmons JA, Pitsillides AA. Time-series transcriptional profiling yields new perspectives on susceptibility to murine osteoarthritis. ACTA ACUST UNITED AC 2013; 64:3256-66. [PMID: 22833266 DOI: 10.1002/art.34572] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Chronological age is a powerful epidemiologic risk factor for osteoarthritis (OA), a multifactorial disease that is characterized by articular cartilage (AC) degradation. It is unclear from a molecular perspective how aging interacts with OA to produce this risk to AC integrity. To address this key question, we used in vivo time-course analysis of OA development and murine interstrain variability in natural susceptibility to OA to examine changes in non-OA-prone CBA mice versus OA-prone STR/Ort mice, which develop disease that bears significant histologic resemblance to human OA. Through global transcriptome profiling, we attempted to discover the molecular signature linked with both OA vulnerability and progression. METHODS Affymetrix Mouse Gene 1.0 ST Array profiles were generated from AC samples derived from CBA and STR/Ort mice at 3 different ages, corresponding to the stages prior to, at, and late after the natural onset of OA in the STR/Ort mice. RESULTS We found that the OA in STR/Ort mice exhibited a molecular phenotype resembling human OA, and we pinpointed a central role of NF-κB signaling and the emergence of an immune-related signature in OA cartilage over time. We discovered that, strikingly, young healthy AC has a highly expressed skeletal muscle gene expression program, which is switched off during maturation, but is intriguingly retained in AC during OA development in STR/Ort mice. CONCLUSION This study is the first to show that AC chondrocytes share a high-abundance gene-expression program with skeletal muscle. We show that failure to switch this program off, as well as the restoration of this program, is associated with inappropriate expression of NF-κB signaling pathways, skeletal muscle-related genes, and induction and/or progression of OA.
Collapse
|
16
|
Yasuda T. Nuclear factor-κB activation by type II collagen peptide in articular chondrocytes: its inhibition by hyaluronan via the receptors. Mod Rheumatol 2012; 23:1116-23. [PMID: 23224053 DOI: 10.1007/s10165-012-0804-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 11/20/2012] [Indexed: 11/24/2022]
Abstract
OBJECTIVE This study aimed to examine nuclear factor-κB (NF-κB) activation by a synthetic peptide from type II collagen fragment (CB12-II) and its inhibition by hyaluronan (HA) via its receptors, CD44, and intercellular adhesion molecule-1 (ICAM-1) in chondrocytes. METHODS Osteoarthritic cartilage explants or chondrocytes in monolayer were cultured with CB12-II. Secreted levels of matrix metalloproteinase (MMP)-13 in conditioned media and NF-κB activation in chondrocytes were determined by immunoblotting and enzyme-linked immunosorbent assay (ELISA). Cultures were pretreated with HA to evaluate the inhibitory effect on CB12-II action, and the role of HA receptors in HA effect was investigated using antibodies to CD44 and ICAM-1. RESULTS CB12-II stimulated phosphorylation and nuclear translocation of NF-κB, leading to increased MMP-13 production. HA suppressed NF-κB activation and MMP-13 induction by CB12-II. The individual antibody to CD44 or ICAM-1 partially reversed HA effect on CB12-II action, and both antibodies in combination completely blocked the HA effect. CONCLUSIONS This study clearly demonstrates that CB12-II activates NF-κB for MMP-13 induction and that HA inhibits CB12-II action through interaction with CD44 and ICAM-1 in chondrocytes. HA administration into osteoarthritic joints could suppress the catabolic action of matrix degradation products such as CB12-II as a potent NF-κB inhibitor.
Collapse
Affiliation(s)
- Tadashi Yasuda
- Department of Sports Medicine, Faculty of Budo and Sports Studies, Tenri University, 80 Tainosho-cho, Tenri, Nara, 632-0071, Japan,
| |
Collapse
|
17
|
Kozawa E, Nishida Y, Cheng XW, Urakawa H, Arai E, Futamura N, Shi GP, Kuzuya M, Hu L, Sasaki T, Ishiguro N. Osteoarthritic change is delayed in a Ctsk-knockout mouse model of osteoarthritis. ACTA ACUST UNITED AC 2012; 64:454-64. [PMID: 21968827 DOI: 10.1002/art.33398] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Several studies have shown that cathepsin K (CTK) is overexpressed in osteoarthritic (OA) cartilage and subchondral bone. However, it has not been well established whether CTK expression is harmful or beneficial. We undertook this study to investigate the direct involvement of CTK in OA development using Ctsk-knockout (Ctsk(-/-)) mice in a joint instability-induced model of OA. METHODS We analyzed the natural course of the phenotype of 25-week-old Ctsk(-/-) mice. OA development was evaluated with a modified Mankin histologic score up to 8 weeks after surgery was performed to destabilize the knee in Ctsk(-/-) and Ctsk(+/+) mice. Histologic analysis was used to evaluate expression of CTK, matrix metalloproteinase 13 (MMP-13), ADAMTS-5, and tartrate-resistant acid phosphatase (TRAP) proteins in chondrocytes, synovial cells, and osteoclasts. Bone architecture was analyzed by histomorphometry. RESULTS Bone mineral content and bone volume were higher in Ctsk(-/-) mice at 25 weeks, whereas OA did not develop spontaneously in either Ctsk(-/-) or Ctsk(+/+) mice. In a model of destabilization-induced OA, OA progression was significantly delayed in Ctsk(-/-) mice. CTK was overexpressed in chondrocytes and synovial cells of knee joints developing OA in Ctsk(+/+) mice. MMP-13 and ADAMTS-5 were less strongly expressed in chondrocytes of Ctsk(-/-) mice, and MMP-13 was less strongly expressed in synovial cells. TRAP-positive osteoclasts were overexpressed in Ctsk(-/-) mice. CONCLUSION These results indicate that CTK plays crucial direct roles in the early to intermediate stage of OA development. CTK-positive chondrocytes and synovial cells may be a possible target to prevent disease progression in OA.
Collapse
Affiliation(s)
- Eiji Kozawa
- Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Yasuda T. Activation of p38 Mitogen-Activated Protein Kinase Is Inhibited by Hyaluronan via Intercellular Adhesion Molecule-1 in Articular Chondrocytes Stimulated With Type II Collagen Peptide. J Pharmacol Sci 2012; 118:25-32. [DOI: 10.1254/jphs.11044fp] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 11/03/2011] [Indexed: 10/14/2022] Open
|
19
|
Developmental mechanisms in articular cartilage degradation in osteoarthritis. ARTHRITIS 2010; 2011:683970. [PMID: 22046522 PMCID: PMC3199933 DOI: 10.1155/2011/683970] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 12/09/2010] [Indexed: 01/16/2023]
Abstract
Osteoarthritis is the most common arthritic condition, which involves progressive degeneration of articular cartilage. The most recent accomplishments have significantly advanced our understanding on the mechanisms of the disease development and progression. The most intriguing is the growing evidence indicating that extracellular matrix destruction in osteoarthritic articular cartilage resembles that in the hypertrophic zone of fetal growth plate during endochondral ossification. This suggests common regulatory mechanisms of matrix degradation in OA and in the development and can provide new approaches for the treatment of the disease by targeting reparation of chondrocyte phenotype.
Collapse
|
20
|
Xu L, Servais J, Polur I, Kim D, Lee PL, Chung K, Li Y. Attenuation of osteoarthritis progression by reduction of discoidin domain receptor 2 in mice. ACTA ACUST UNITED AC 2010; 62:2736-44. [PMID: 20518074 DOI: 10.1002/art.27582] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To investigate whether the reduction of discoidin domain receptor 2 (DDR-2), a cell membrane tyrosine kinase receptor for native type II collagen, attenuates the progression of articular cartilage degeneration in mouse models of osteoarthritis (OA). METHODS Double-heterozygous (type XI collagen-deficient [Col11a1(+/-)] and Ddr2-deficient [Ddr2(+/-)]) mutant mice were generated. Knee joints of Ddr2(+/-) mice were subjected to microsurgical destabilization of the medial meniscus. Conditions of the articular cartilage from the knee joints of the double-heterozygous mutant and surgically treated mice were examined by histology, evaluated using a modified Mankin scoring system, and characterized by immunohistochemistry. RESULTS The rate of progressive degeneration in knee joints was dramatically reduced in the double-heterozygous mutant mice compared with that in the type XI collagen-deficient mice. The progression in the double-heterozygous mutant mice was delayed by ∼6 months. Following surgical destabilization of the medial meniscus, the progressive degeneration toward OA was dramatically delayed in the Ddr2(+/-) mice compared with that in their wild-type littermates. The articular cartilage damage present in the knee joints of the mice was directly correlated with the expression profiles of DDR-2 and matrix metalloproteinase 13. CONCLUSION Reduction of DDR-2 expression attenuates the articular cartilage degeneration of knee joints induced either by type XI collagen deficiency or by surgical destabilization of the medial meniscus.
Collapse
Affiliation(s)
- Lin Xu
- Harvard School of Dental Medicine, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
17β-estradiol reduces expression of MMP-1, -3, and -13 in human primary articular chondrocytes from female patients cultured in a three dimensional alginate system. Cell Tissue Res 2010; 342:283-93. [PMID: 20941509 DOI: 10.1007/s00441-010-1062-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 09/22/2010] [Indexed: 10/19/2022]
Abstract
Clinical observations have suggested a relationship between osteoarthritis and a changed sex-hormone metabolism, especially in menopausal women. This study analyzes the effect of 17β-estradiol on expression of matrix metalloproteinases-1, -3, -13 (MMP-1, -3, -13) and tissue inhibitors of metalloproteinases-1, -2 (TIMP-1, -2) in articular chondrocytes. An imbalance of matrix metalloproteinases (MMPs) specialized on degradation of articular cartilage matrix over the respective inhibitors of these enzymes (TIMPs) that leads to matrix destruction was postulated in the pathogenesis of osteoarthritis. Primary human articular chondrocytes from patients of both genders were cultured in alginate beads at 5% O(2) to which 10(-11)M-10(-5)M 17β-estradiol had been added and analyzed by means of immunohistochemistry, immunocytochemistry and real-time RT-PCR. Since articular chondrocytes in vivo are adapted to a low oxygen tension, culture was performed at 5% O(2). Immunohistochemical staining in articular cartilage tissue from patients and immunocytochemical staining in articular chondrocytes cultured in alginate beads was positive for type II collagen, estrogen receptor α, MMP-1, and -13. It was negative for type I collagen, MMP-3, TIMP-1 and -2. Using real-time RT-PCR, it was demonstrated that physiological and supraphysiological doses of 17β-estradiol suppress mRNA levels of MMP-3 and -13 significantly in articular chondrocytes of female patients. A significant suppressing effect was also seen in MMP-1 mRNA after a high dose of 10(-5)M 17β-estradiol. Furthermore, high doses of this hormone led to tendentially lower TIMP-1 levels whereas the TIMP-2 mRNA level was not influenced. In male patients, only incubations with high doses (10(-5)M) of 17β-estradiol were followed by a tendency to suppressed MMP-1 and TIMP-1 levels while TIMP-2 mRNA level was decreased significantly. There was no effect on MMP-13 expression of cells from male patients. Taken together, application of 17β-estradiol in physiological doses will improve the imbalance between the amounts of MMPs and TIMPs in articular chondrocytes from female patients. Downregulation of TIMP-2 by 17β-estradiol in male patients would not be articular cartilage protective.
Collapse
|
22
|
Sverdrup FM, Yates MP, Vickery LE, Klover JA, Song LRH, Anglin CP, Misko TP. Protein geranylgeranylation controls collagenase expression in osteoarthritic cartilage. Osteoarthritis Cartilage 2010; 18:948-55. [PMID: 20417291 DOI: 10.1016/j.joca.2010.03.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 03/15/2010] [Accepted: 03/22/2010] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Statins possess anti-inflammatory properties. This study was undertaken to characterize the mechanism of action of statin drugs on collagenase expression in primary human osteoarthritic cartilage tissue. METHOD Human articular chondrocytes and cartilage explants from osteoarthritic donors were exposed to simvastatin in the presence or absence of interleukin-1 beta (IL-1beta). Collagenase expression was determined by quantifying levels of matrix metalloproteinase 13 (MMP-13) and MMP-1 mRNA and MMP-13 protein. The mechanism of statin action was tested by addition of farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) or by using inhibitors of farnesyl transferase (FT) and geranylgeranyl transferase (GGT-1). RESULTS Treatment of osteoarthritic chondrocytes with simvastatin decreased mRNA levels of MMP-13 and MMP-1 whether under basal conditions or during stimulation with IL-1beta. MMP-13 protein secreted into the culture media was also decreased. Genes involved in cartilage synthesis (type II collagen and aggrecan) were not down-regulated by simvastatin. Exogenous addition of GGPP completely reversed the statin-mediated decrease in MMP-13 mRNA and protein levels whereas FPP partially reversed the statin-mediated effect. An inhibitor of GGT-1 mimicked the simvastatin-mediated reduction in MMP-13 expression by chondrocytes. Finally, consistent with impacts on MMP-13 and MMP-1 expression, simvastatin as well as the GGT-1 inhibitor both blocked type II collagen degradation in primary human articular cartilage explants. CONCLUSION These results suggest that statins modulate chondrocyte metabolism by reducing prenylation of key signaling molecules that control the expression of collagen-degrading enzymes. Our results strongly support the hypothesis that protein prenyltransferases including geranylgeranyl transferase regulate chondrocyte collagenase expression in osteoarthritis.
Collapse
|
23
|
Zhang A, Cao JL, Yang B, Chen JH, Zhang ZT, Li SY, Fu Q, Hugnes CE, Caterson B. Effects of moniliformin and selenium on human articular cartilage metabolism and their potential relationships to the pathogenesis of Kashin-Beck disease. J Zhejiang Univ Sci B 2010; 11:200-8. [PMID: 20205306 DOI: 10.1631/jzus.b0900074] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To investigate the effects of mycotoxin moniliformin (MON) on the metabolism of aggrecan and type II collagen in human chondrocytes in vitro and the relationship between MON and Kashin-Beck disease (KBD). METHODS Human chondrocytes were isolated and cultured on bone matrix gelatin to form an artificial cartilage model in vitro with or without MON toxin. Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The expression of aggrecan and type II collagen in the cartilage was determined using immunocytochemical staining. RESULTS MON toxin inhibited chondrocyte viability in dose-dependent and time-dependent manners. MON reduced aggrecan and type II collagen syntheses in the tissue-engineered cartilage. MON also increased the expression of matrix metalloproteinase-1 (MMP-1), MMP-13, BC4 epitopes, and CD44 in cartilages. However, the expression of 3B3(-) epitopes in cartilages was inhibited by MON. Selenium partially alleviated the damage of aggrecan induced by MON toxin. CONCLUSION MON toxin promoted the catabolism of aggrecan and type II collagen in human chondrocytes.
Collapse
Affiliation(s)
- An Zhang
- Institute of Endemic Diseases, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hagiwara Y, Ando A, Chimoto E, Tsuchiya M, Takahashi I, Sasano Y, Onoda Y, Suda H, Itoi E. Expression of collagen types I and II on articular cartilage in a rat knee contracture model. Connect Tissue Res 2010; 51:22-30. [PMID: 20067413 DOI: 10.3109/03008200902859406] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The purpose of our study was to clarify the expression patterns of collagen types I and II on articular cartilage after immobilization in a rat knee contracture model in 3 specific areas (noncontact area, transitional area, contact area). The unilateral knee joints of adult male rats were rigidly immobilized at 150 degrees of flexion using screws and a rigid plastic plate. Sham-operated animals had holes drilled in the femur and the tibia and screws inserted but were not plated. The expression patterns of collagen types I and II in each area were evaluated by in situ hybridization (ISH), immunohistochemistry (IHC), and quantitative real-time polymerase chain reaction (qPCR). The expression of collagen type II in the noncontact area was decreased by ISH but appeared unchanged when examined by IHC. In the transitional and contact areas, the expression of collagen type II was initially shown to have decreased and then increased at the hypertrophic chondrocytes by ISH but appeared decreased by IHC. Quantitative PCR revealed the decreased expression of type II collagen in the contact area. Immunostaining of collagen type I was increased at the noncontact area and transitional areas. Alterations of collagen types I and II expression may also affect the degeneration of articular cartilage after immobilization and the changes were different in the three areas.
Collapse
Affiliation(s)
- Yoshihiro Hagiwara
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai; Takeda General Hospital, Aizuwakamatsu, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Klatt AR, Zech D, Kühn G, Paul-Klausch B, Klinger G, Renno JH, Schmidt J, Malchau G, Wielckens K. Discoidin domain receptor 2 mediates the collagen II-dependent release of interleukin-6 in primary human chondrocytes. J Pathol 2009; 218:241-7. [PMID: 19267386 DOI: 10.1002/path.2529] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We deciphered constituent parts of a signal transduction cascade that is initiated by collagen II and results in the release of various pro-inflammatory cytokines, including interleukin-6 (IL-6), in primary human chondrocytes. This cascade represents a feed-forward mechanism whereby cartilage matrix degradation is exacerbated by the mutually inducing effect of released collagen II fragments and pro-inflammatory cytokines. We previously proposed discoidin domain receptor 2 as a central mediator in this event. Since this cascade plays a prominent role in the pathogenesis of osteoarthritis, our study further investigates the hypothesis that discoidin domain receptor 2 is a candidate receptor for collagen II, and that transcription factor NFkappaB, lipid kinase PI3K, and the MAP kinases are constituent parts of this very signal transduction cascade. To accomplish this, we selectively knocked down the molecules of interest in primary human chondrocytes, induced the specified cascade by incubating primary human chondrocytes with collagen II, and observed the outcome, specifically the changes in interleukin-6 release. Knockdown was performed by siRNA-mediated gene silencing in the case of discoidin domain receptor 2 (DDR2) or by using specific inhibitors for the remainder of the molecules. Results indicated that discoidin domain receptor 2 mediates the collagen II-dependent release of interleukin-6 in primary human chondrocytes and that MAP kinases p38, JNK and ERK, as well as transcription factor NFkappaB, are integral components of intracellular collagen II signalling. Given the detrimental role of these molecules in osteoarthritis, our findings provide new targets for more specific therapeutics, which may have fewer side effects than those currently applied.
Collapse
Affiliation(s)
- Andreas R Klatt
- Institute for Clinical Chemistry, University of Cologne, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Vinardell T, Dejica V, Poole AR, Mort JS, Richard H, Laverty S. Evidence to suggest that cathepsin K degrades articular cartilage in naturally occurring equine osteoarthritis. Osteoarthritis Cartilage 2009; 17:375-83. [PMID: 18809344 DOI: 10.1016/j.joca.2008.07.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Accepted: 07/19/2008] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The mechanisms leading to degeneration of articular cartilage in osteoarthritis (OA) are complex and not yet fully understood. Cathepsin K (CK) is a cysteine protease which can also cleave the triple helix of type II collagen. This exposes a neoepitope that can now be identified by specific antibodies. The aim of this study was to obtain evidence suggesting a role for CK in naturally occurring equine OA in both lesional and peri-lesional regions. METHODS Articular cartilages (n=12 horses; 5 healthy, 7 OA) were harvested from animals postmortem. A gross macroscopic examination, histologic (Safranin O-Fast Green and Picrosirius red staining) and immunohistochemical evaluation were performed. Samples were divided into normal appearing cartilage, peri-lesional and lesional cartilage. Cartilage degradation in the samples was graded histologically and immunohistochemically. CK and possible CK cleavage were detected immunohistochemically with specific anti-protein and anti-neoepitope antibodies, respectively. A comparison of CK neoepitope (C2K) production with the collagenase-generated neoepitope produced by matrix metalloproteinases (MMP)-1, 8 and 13 (C2C) was also assessed immunohistochemically. RESULTS CK and CK cleavage were significantly more abundant in OA cartilage (both peri-lesional and lesional) when compared to remote cartilage within the sample joint or cartilage from healthy joints. The immunohistochemical pattern observed for CK degradation (C2K) was similar to that of collagenase degradation (C2C). Macroscopic cartilage changes and histologic findings were significantly correlated with immunohistochemistry results. CONCLUSION The data generated suggests that CK may be involved in cartilage collagen degradation in naturally occurring osteoarthritis.
Collapse
Affiliation(s)
- T Vinardell
- Département des sciences cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, St. Hyacinthe, Québec, Canada
| | | | | | | | | | | |
Collapse
|
27
|
Im HJ, Li X, Muddasani P, Kim GH, Davis F, Rangan J, Forsyth CB, Ellman M, Thonar EJMA. Basic fibroblast growth factor accelerates matrix degradation via a neuro-endocrine pathway in human adult articular chondrocytes. J Cell Physiol 2008; 215:452-63. [PMID: 17960584 PMCID: PMC2893571 DOI: 10.1002/jcp.21317] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pain-related neuropeptides released from synovial fibroblasts, such as substance P, have been implicated in joint destruction. Substance P-induced inflammatory processes are mediated via signaling through a G-protein-coupled receptor, that is, neurokinin-1 tachykinin receptor (NK(1)-R). We determined the pathophysiological link between substance P and its receptor in human adult articular cartilage homeostasis. We further examined if catabolic growth factors such as basic fibroblast growth factor (bFGF or FGF-2) or IL-1beta accelerate matrix degradation via a neural pathway upregulation of substance P and NK(1)-R. We show here that substance P stimulates the production of cartilage-degrading enzymes, such as matrix metalloproteinase-13 (MMP-13), and suppresses proteoglycan deposition in human adult articular chondrocytes via NK(1)-R. Furthermore, we have demonstrated that substance P negates proteoglycan stimulation promoted by bone morphogenetic protein-7, suggesting the dual role of substance P as both a pro-catabolic and anti-anabolic mediator of cartilage homeostasis. We report that bFGF-mediated stimulation of substance P and its receptor NK(1)-R is, in part, through an IL-1beta-dependent pathway.
Collapse
Affiliation(s)
- Hee-Jeong Im
- Department of Biochemistry, Rush University Medical Center, Cohn Research BD, Chicago, Illinois 60612, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Treatment strategies for osteoarthritis most commonly involve the removal or replacement of damaged joint tissue. Relatively few treatments attempt to arrest, slow down or reverse the disease process. Such options include peri-articular osteotomy around the hip or knee, and treatment of femoro-acetabular impingement, where early intervention may potentially alter the natural history of the disease. A relatively small proportion of patients with osteoarthritis have a clear predisposing factor that is both suitable for modification and who present early enough for intervention to be deemed worthwhile. This paper reviews recent advances in our understanding of the pathology, imaging and progression of early osteoarthritis.
Collapse
Affiliation(s)
- T. C. B. Pollard
- Nuffield Department of Orthopaedic Surgery, University of Oxford, Nuffield Orthopaedic Centre, Windmill Road, Headington, Oxford OX3 7LD, UK
| | - S. E. Gwilym
- Nuffield Department of Orthopaedic Surgery, University of Oxford, Nuffield Orthopaedic Centre, Windmill Road, Headington, Oxford OX3 7LD, UK
| | - A. J. Carr
- Nuffield Department of Orthopaedic Surgery, University of Oxford, Nuffield Orthopaedic Centre, Windmill Road, Headington, Oxford OX3 7LD, UK
| |
Collapse
|
29
|
Celecoxib inhibits production of MMP and NO via down-regulation of NF-kappaB and JNK in a PGE2 independent manner in human articular chondrocytes. Rheumatol Int 2007; 28:727-36. [PMID: 18080123 DOI: 10.1007/s00296-007-0511-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2007] [Accepted: 11/28/2007] [Indexed: 10/22/2022]
Abstract
The purpose of this study was to examine the effects of celecoxib on matrix metalloproteinases (MMP-1 and MMP-3), nitric oxide (NO), and the phosphorylation of nuclear factor-kappaB (NF-kappaB) and three mitogen-activated protein kinases (MAPKs), (p38, JNK and ERK) in human articular chondrocytes from normal, osteoarthritis, and rheumatoid arthritis cartilages. Celecoxib at 100 nM reduced the IL-1beta-induced productions of MMP-1, MMP-3, iNOS, and NO, whereas indomethacin at 100 nM showed no effect. The additional stimulation of prostaglandin E2 (PGE2) failed to restore those productions, while the production of PGE2 were reduced by 1 and 10 microM but not 100 nM of celecoxib. The inhibitors of NF-kappaB, JNK and p38, but not ERK, decreased IL-1beta-enhanced MMP-1, MMP-3 and NO production, respectively, and 100 nM celecoxib down-regulated the phosphorylation of NF-kappaB and JNK but has no effect on either p38 or ERK. Celecoxib has inhibitory effects on MMP-1, MMP-3 and NO productions, suggesting the protective roles directly on articular chondrocytes. Despite the COX-2 selectivity, celecoxib affects those productions via not PGE2 but NF-kappaB and JNK MAPK.
Collapse
|
30
|
Ruettger A, Schueler S, Mollenhauer JA, Wiederanders B. Cathepsins B, K, and L are regulated by a defined collagen type II peptide via activation of classical protein kinase C and p38 MAP kinase in articular chondrocytes. J Biol Chem 2007; 283:1043-51. [PMID: 17991740 DOI: 10.1074/jbc.m704915200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Degradation of the extracellular matrix (ECM) is a prominent feature in osteoarthritis (OA), which is mainly because of the imbalance between anabolic and catabolic processes in chondrocytes resulting in cartilage and bone destruction. Various proteases act in concert to degrade matrix components, e.g. type II collagen, MMPs, ADAMTS, and cathepsins. Protease-generated collagen fragments may foster the destructive process. However, the signaling pathways associated with the action of collagen fragments on chondrocytes have not been clearly defined. The present data demonstrate that the N-terminal telopeptide of collagen type II enhances expression of cathepsins B, K, and L in articular chondrocytes at mRNA, protein, and activity levels, mediated at least in part through extracellular calcium. We also demonstrate that the induction is associated with the activation of protein kinase C and p38 MAP kinase.
Collapse
Affiliation(s)
- Anke Ruettger
- Institute of Biochemistry I, Universitätsklinikum, University of Jena, 07743 Jena, Germany
| | | | | | | |
Collapse
|
31
|
De Croos JNA, Jang B, Dhaliwal SS, Grynpas MD, Pilliar RM, Kandel RA. Membrane type-1 matrix metalloproteinase is induced following cyclic compression of in vitro grown bovine chondrocytes. Osteoarthritis Cartilage 2007; 15:1301-10. [PMID: 17548215 DOI: 10.1016/j.joca.2007.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Accepted: 04/15/2007] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine if membrane type-1 matrix metalloproteinase (MT1-MMP) will respond to cyclic compression of chondrocytes grown in vitro and the regulatory mechanisms underlying this response. METHODS Cyclic compression (30min, 1kPa, 1Hz) was applied to bovine chondrocytes (6-9-month-old animals) grown on top of a biodegradable substrate within 3 days of initiating culture. Luciferase assays using bovine articular chondrocytes were undertaken to demonstrate the mechanosensitivity of MT1-MMP. Semi-quantitative reverse-transcription polymerase chain reaction (RT-PCR) and western blot analysis were used to establish the time course of gene and protein upregulation in response to cyclic compression. The regulation of MT1-MMP was assessed by electrophoretic mobility shift assays, RT-PCR and western blot analysis. As well, an MT1-MMP decoy oligonucleotide and an extracellular signal-regulated kinase 1/2 (ERK1/2) pharmacological inhibitor were utilized to further characterize MT1-MMP regulation. RESULTS After cyclic compression, MT1-MMP showed a rapid and transient increase in gene expression. Elevated protein levels were detected within 2h of stimulation which returned to baseline by 6h. During cyclic compression, phosphorylation of the mitogen activated protein kinase ERK1/2 increased significantly. This was followed by increased gene and protein expression of the transcription factor; early growth factor-1 (Egr-1) and Egr-1 binding to the MT1-MMP promoter. Blocking Egr-1 DNA binding with a decoy MT1-MMP oligonucleotide, downregulated MT1-MMP gene expression. The ERK1/2 inhibitor U0126 also reduced Egr-1 DNA binding activity to MT1-MMP promoter sequences and subsequent transcription of MT1-MMP. CONCLUSIONS These data suggest that cyclic compression of chondrocytes in vitro upregulates MT1-MMP via ERK1/2 dependent activation of Egr-1 binding. Delineation of the regulatory pathways activated by mechanical stimulation will further our understating of the mechanisms influencing tissue remodeling.
Collapse
Affiliation(s)
- J N A De Croos
- CIHR BioEngineering of Skeletal Tissues Team, Mount Sinai Hospital, Canada
| | | | | | | | | | | |
Collapse
|
32
|
Ng KW, Saliman JD, Lin EY, Statman LY, Kugler LE, Lo SB, Ateshian GA, Hung CT. Culture duration modulates collagen hydrolysate-induced tissue remodeling in chondrocyte-seeded agarose hydrogels. Ann Biomed Eng 2007; 35:1914-23. [PMID: 17721729 DOI: 10.1007/s10439-007-9373-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Accepted: 08/14/2007] [Indexed: 11/29/2022]
Abstract
Media supplementation with collagen hydrolysate was hypothesized to increase the collagen content in engineered cartilage. By d28, hydrolysate at 0.5 mg/mL increased type II collagen content and 1 mg/mL increased mechanical properties, total collagen content, and type II collagen content over controls. By d42, however, controls possessed the highest GAG content and compressive Young's modulus. Real-time PCR found that 1 mg/mL increased type II collagen gene expression in d0 constructs, but increased MMP expression with no effect on type II collagen on d28. A 10 mg/mL concentration produced the lowest tissue properties, the lowest type II collagen gene expression on d0, and the highest MMP gene expression on d28. These results indicate that the duration of culture modulates the response of chondrocytes to collagen hydrolysate in 3D culture, transforming the response from positive to negative. Therefore, collagen hydrolysate as a media supplement is not a viable long-term method to improve the collagen content of engineered cartilage tissue.
Collapse
Affiliation(s)
- Kenneth W Ng
- Cellular Engineering Laboratory, Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, MC8904, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Ahmad R, Sylvester J, Zafarullah M. MyD88, IRAK1 and TRAF6 knockdown in human chondrocytes inhibits interleukin-1-induced matrix metalloproteinase-13 gene expression and promoter activity by impairing MAP kinase activation. Cell Signal 2007; 19:2549-57. [PMID: 17905570 DOI: 10.1016/j.cellsig.2007.08.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Accepted: 08/06/2007] [Indexed: 01/29/2023]
Abstract
Interleukin-1 (IL-1) is the major prototypic proinflammatory cytokine that stimulates degradation of cartilage in arthritis by inducing prominent collagen II-degrading matrix metalloproteinase-13 (MMP-13). Nothing is known about the involvement of adaptor proteins, MyD88, IRAK1 and TRAF6 in MMP-13 regulation. Here we investigated for the first time the role of these proteins in IL-1-regulated MMP-13 expression in chondrocytes. MyD88 homodimerization inhibitory peptide diminished the expression of MMP-13 gene, promoter activity, phosphorylation of mitogen-activated protein kinases (MAPKs), c-Jun and activating protein 1 (AP-1) activity. Knockdown of MyD88, IRAK1 and TRAF6 by RNA interference (RNAi) drastically down-regulated the expression of IL-1-induced MMP-13 mRNA and protein levels and MMP-13 promoter-driven luciferase activity. Non-specific control siRNA had no effect. Mechanisms of MMP-13 inhibition involved reduced phosphorylation of ERK, p38, JNK and c-Jun as well as AP-1 transcription factor binding activity. The genetic evidence presented here demonstrates that MyD88, IRAK1 and TRAF6 proteins are crucial early mediators for the IL-1-induced MMP-13 regulation through MAPK pathways and AP-1 activity. These proteins could constitute important therapeutic targets for arthritis-associated cartilage loss by MMP-13.
Collapse
Affiliation(s)
- Rasheed Ahmad
- Department of Medicine, University of Montreal and Research Centre of CHUM Notre-Dame Hospital, Montreal, Quebec, Canada H2L 4M1
| | | | | |
Collapse
|
34
|
Abstract
In arthritic diseases, the stability of the extracellular matrix of articular cartilage is compromised by extensive proteolytic breakdown associated with alterations of synthesis of the proteins of the tissue leading to cartilage loss. This article reviews developments in assays of biochemical markers of cartilage matrix turnover and studies investigating their use. Because type II collagen and aggrecan are the most abundant proteins of the cartilage matrix, current biochemical markers are based mainly on immunologic reagents detecting their synthesis and degradation. Clinical studies indicate that some markers of type II collagen may be useful to predict disease progression in osteoarthritis and rheumatoid arthritis. Conversely, major achievements have been made in the development of immunoassays detecting the various fragments of aggrecan released by matrix metalloproteases or aggrecanases, but their use has been limited mostly to investigating cartilage turnover in ex vivo experiments. Because of the complexity of the mechanisms involved in arthritic joint damage, only a combination of different biochemical markers reflecting the various aspects of synthesis and degradation of matrix molecules will likely provide efficient cartilage turnover monitoring.
Collapse
|
35
|
Tchetina EV, Kobayashi M, Yasuda T, Meijers T, Pidoux I, Poole AR. Chondrocyte hypertrophy can be induced by a cryptic sequence of type II collagen and is accompanied by the induction of MMP-13 and collagenase activity: implications for development and arthritis. Matrix Biol 2007; 26:247-58. [PMID: 17306969 DOI: 10.1016/j.matbio.2007.01.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 12/05/2006] [Accepted: 01/11/2007] [Indexed: 11/24/2022]
Abstract
The objective of this study was to determine whether a peptide of type II collagen which can induce collagenase activity can also induce chondrocyte terminal differentiation (hypertrophy) in articulate cartilage. Full depth explants of normal adult bovine articular cartilage were cultured with or without a 24 mer synthetic peptide of type II collagen (residues 195-218) (CB12-II). Peptide CB12-II lacks any RGD sequence and is derived from the CB12 fragment of type II collagen. Type II collagen cleavage by collagenase was measured by ELISA in cartilage and medium. Real-time RT-PCR was used to analyze gene expression of the chondrocyte hypertrophy markers COL10A1 and MMP-13. Immunostaining for anti-Ki67, anti-PCNA, (proliferation markers), type X collagen, cleavage of type II collagen by collagenases (hypertrophy markers) and TUNEL staining (hypertrophy and apoptosis markers) were used to detect progressive maturational stages of chondrocyte hypertrophy. At high but naturally occurring concentrations (10 microM and up) the collagen peptide CB12-II induced an increase in the expression of MMP-13 (24 h) and cleavage of type II collagen by collagenase in the mid zone (day 4) and also in the superficial zone (day 6). Furthermore the peptide induced an increase in proliferation on day 1 in the mid and deep zones extending to the superficial zone by day 4. There was also upregulation of COL10A1 expression at day 4 and of type X staining in the mid zone extending to the superficial zone by day 6. Apoptotic cell death was increased by day 4 in the lower deep zone and also in the superficial zone at day 7. The increase in apoptosis in the deep zone was also seen in controls. Our results show that the induction of collagenase activity by a cryptic peptide sequence of type II collagen, is accompanied by chondrocyte hypertrophy and associated with cellular and matrix changes. This induction occurs in the mid and superficial zones of previously healthy articular cartilage. This response of the chondrocyte to a cryptic sequence of denatured type II collagen may play a role in naturally occurring hypertrophy in endochondral ossification and in the development of cartilage pathology in osteoarthritis.
Collapse
Affiliation(s)
- Elena V Tchetina
- Joint Diseases Laboratory, Shriners Hospitals for Children and Department of Surgery, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|