1
|
Ma C, Yu R, Li J, Chao J, Liu P. Targeting proteostasis network in osteoporosis: Pathological mechanisms and therapeutic implications. Ageing Res Rev 2023; 90:102024. [PMID: 37532006 DOI: 10.1016/j.arr.2023.102024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/11/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
As the most common bone disease, osteoporosis (OP) increases bone fragility and makes patients more vulnerable to the threat of osteoporotic fractures. With the ageing population in today's society, OP has become a huge and growing public health problem. Unfortunately, the clear pathogenesis of OP is still under exploration, and effective interventions are still scarce. Therefore, exploring new targets for pharmacological interventions to develop promising therapeutic drugs for OP is of great clinical value. Previous studies have shown that normal bone remodeling depends on proteostasis, whereas loss of proteostasis during ageing leads to the dysfunctional proteostasis network (PN) that fails to maintain bone homeostasis. Nevertheless, only a few studies have revealed the pathophysiological relationship between bone metabolism and a single component of PN, yet the role of PN as a whole in the pathogenesis of OP is still under investigation. This review comprehensively summarized the role of PN in the pathogenesis of OP and further discussed the potential of PN as innovative drug targets for the therapy of OP.
Collapse
Affiliation(s)
- Cong Ma
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China; Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ronghui Yu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Junhong Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiashuo Chao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Ping Liu
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China.
| |
Collapse
|
2
|
Matrisome alterations in obesity – Adipose tissue transcriptome study on monozygotic weight-discordant twins. Matrix Biol 2022; 108:1-19. [DOI: 10.1016/j.matbio.2022.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 02/16/2022] [Accepted: 02/23/2022] [Indexed: 12/11/2022]
|
3
|
A partially demineralized allogeneic bone graft: in vitro osteogenic potential and preclinical evaluation in two different intramembranous bone healing models. Sci Rep 2021; 11:4907. [PMID: 33649345 PMCID: PMC7921404 DOI: 10.1038/s41598-021-84039-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
In skeletal surgical procedures, bone regeneration in irregular and hard-to-reach areas may present clinical challenges. In order to overcome the limitations of traditional autologous bone grafts and bone substitutes, an extrudable and easy-to-handle innovative partially demineralized allogenic bone graft in the form of a paste has been developed. In this study, the regenerative potential of this paste was assessed and compared to its clinically used precursor form allogenic bone particles. Compared to the particular bone graft, the bone paste allowed better attachment of human mesenchymal stromal cells and their commitment towards the osteoblastic lineage, and it induced a pro-regenerative phenotype of human monocytes/macrophages. The bone paste also supported bone healing in vivo in a guide bone regeneration model and, more interestingly, exhibited a substantial bone-forming ability when implanted in a critical-size defect model in rat calvaria. Thus, these findings indicate that this novel partially demineralized allogeneic bone paste that combines substantial bone healing properties and rapid and ease-of-use may be a promising alternative to allogeneic bone grafts for bone regeneration in several clinical contexts of oral and maxillofacial bone grafting.
Collapse
|
4
|
Li YY, Lam KL, Chen AD, Zhang W, Chan BP. Collagen microencapsulation recapitulates mesenchymal condensation and potentiates chondrogenesis of human mesenchymal stem cells – A matrix-driven in vitro model of early skeletogenesis. Biomaterials 2019; 213:119210. [DOI: 10.1016/j.biomaterials.2019.05.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/28/2019] [Accepted: 05/10/2019] [Indexed: 01/01/2023]
|
5
|
Li S, Poche JN, Liu Y, Scherr T, McCann J, Forghani A, Smoak M, Muir M, Berntsen L, Chen C, Ravnic DJ, Gimble J, Hayes DJ. Hybrid Synthetic-Biological Hydrogel System for Adipose Tissue Regeneration. Macromol Biosci 2018; 18:e1800122. [PMID: 30247815 DOI: 10.1002/mabi.201800122] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/12/2018] [Indexed: 01/28/2023]
Abstract
Hydrogels are promising scaffolds for adipose tissue regeneration. Currently, the incorporation of bioactive molecules in hydrogel system is used, which can increase the cell proliferation rate or improve adipogenic differentiation performance of stromal stem cells but often suffers from high expense or cytotoxicity because of light/thermal curing used for polymerization. In this study, decellularized adipose tissue is incorporated, at varying concentrations, with a thiol-acrylate fraction that is then polymerized to produce hydrogels via a Michael addition reaction. The results reveal that the major component of isolated adipose-derived extracellular matrix (ECM) is Collagen I. Mechanical properties of ECM polyethylene glycol (PEG) are not negatively affected by the incorporation of ECM. Additionally, human adipose-derived stem cells (hASCs) are encapsulated in ECM PEG hydrogel with ECM concentrations varying from 0% to 1%. The results indicate that hASCs maintained the highest viability and proliferation rate in 1% ECM PEG hydrogel with most lipids formation when cultured in adipogenic conditions. Furthermore, more adipose regeneration is observed in 1% ECM group with in vivo study by Day 14 compared to other ECM PEG hydrogels with lower ECM content. Taken together, these findings suggest the ECM PEG hydrogel is a promising substitute for adipose tissue regeneration applications.
Collapse
Affiliation(s)
- Shue Li
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Department of Biomedical Engineering, Pennsylvania State University, Millennium Science Complex, University Park, PA, 16802, USA
| | | | - Yiming Liu
- Department of Biomedical Engineering, Pennsylvania State University, Millennium Science Complex, University Park, PA, 16802, USA
| | - Thomas Scherr
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
| | - Jacob McCann
- Department of Biomedical Engineering, Pennsylvania State University, Millennium Science Complex, University Park, PA, 16802, USA
| | - Anoosha Forghani
- Department of Biomedical Engineering, Pennsylvania State University, Millennium Science Complex, University Park, PA, 16802, USA
| | - Mollie Smoak
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| | - Mitchell Muir
- Department of Biological Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Lisa Berntsen
- Department of Biomedical Engineering, Pennsylvania State University, Millennium Science Complex, University Park, PA, 16802, USA
| | - Cong Chen
- Department of Biomedical Engineering, Pennsylvania State University, Millennium Science Complex, University Park, PA, 16802, USA
| | - Dino J Ravnic
- Division of Plastic Surgery, Department of Surgery, PennState Health Milton S. Hershey Medical Center, Hershey, PA, 17033, USA
| | - Jeffrey Gimble
- Department of Medicine and Surgery, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Daniel J Hayes
- Department of Biomedical Engineering, Pennsylvania State University, Millennium Science Complex, University Park, PA, 16802, USA
| |
Collapse
|
6
|
Tew LS, Ching JY, Ngalim SH, Khung YL. Driving mesenchymal stem cell differentiation from self-assembled monolayers. RSC Adv 2018; 8:6551-6564. [PMID: 35540392 PMCID: PMC9078311 DOI: 10.1039/c7ra12234a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/27/2018] [Indexed: 12/26/2022] Open
Abstract
The utilization of self-assembled monolayer (SAM) systems to direct Mesenchymal Stem Cell (MSC) differentiation has been covered in the literature for years, but finding a general consensus pertaining to its exact role over the differentiation of stem cells had been rather challenging. Although there are numerous reports on surface functional moieties activating and inducing differentiation, the results are often different between reports due to the varying surface conditions, such as topography or surface tension. Herein, in view of the complexity of the subject matter, we have sought to catalogue the recent developments around some of the more common functional groups on predominantly hard surfaces and how these chemical groups may influence the overall outcome of the mesenchymal stem cells (MSC) differentiation so as to better establish a clearer underlying relationship between stem cells and their base substratum interactions. Graphical illustration showing the functional groups that drive MSC differentiation without soluble bioactive cues within the first 14 days.![]()
Collapse
Affiliation(s)
- L. S. Tew
- Regenerative Medicine Cluster
- Advanced Medical and Dental Institute (AMDI)
- Universiti Sains Malaysia
- Malaysia
| | - J. Y. Ching
- Institute of Biological Science and Technology
- China Medical University
- Taichung
- Republic of China
| | - S. H. Ngalim
- Regenerative Medicine Cluster
- Advanced Medical and Dental Institute (AMDI)
- Universiti Sains Malaysia
- Malaysia
| | - Y. L. Khung
- Institute of New Drug Development
- China Medical University
- Taichung
- Republic of China
| |
Collapse
|
7
|
Fang TJ, Wang DH, Wang CY, Poongodi R, Liou NH, Liu JC, Hsu ML, Hong PD, Yang SF, Liu ML. Osteogenic prospective of deriving human dental stem cells in collagen matrix boost. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:192. [PMID: 29143185 DOI: 10.1007/s10856-017-6001-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/06/2017] [Indexed: 05/28/2023]
Abstract
Stem cells derived from oral tissue represent a highly attractive alternative source for clinical bone regeneration because they can be collected by non-invasive or minimally invasive procedures. Herein, we describe the human dental stem cells (DSCs) deriving from buccal fat pads (BFP), dental pulp (DP) of impacted teeth, and periodontal ligaments (PDL) to obtain BFPSCs, DPSCs, and PDLSCs, respectively. Cells were purified with selected medium and expanded through passages in stem cell culture medium. Purified cells were characterized for stemness by their growth rate, immunostaining, and multilineage differentiation ability. They showed plastic adherence, expression of stemness-specific markers, and multilineage differentiation potential. Immunocytochemistry analysis confirmed that DPSCs had more osteogenic potential than BFSCs and PDLSCs. Calcium-rich deposits, evaluated by von Kossa and Alizarin red staining, showed greater mineralization when DPSCs were cultured on collagen type I matrix than without collagen. Furthermore, DPSC-seeded collagen type I matrix maintained consistent osteogenesis and boosted mineral formation by 1-2 weeks over that in DPSCs cultured without collagen. Radiographic analysis of DPSC-seeded collagen type I matrix transplanted into rat cranial defects showed significant bone regeneration after 8 weeks. These results suggested that the redundant oral tissue can be used as a source of adult multipotent stem cells for clinical bone regeneration. Triple overlay images with biomarkers (red), nuclei (blue) and bright field morphology of DPSCs. The specifically osteo-differentiation shown by osteocalcin (left) expression and lack of sox9 (right) expressed in the images below which were cultured with collagen matrix, contrast with no collagen matrix group above.
Collapse
Affiliation(s)
- Tong-Jing Fang
- Graduate Institute of Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, China
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan, China
| | - Ding-Han Wang
- School of Dentistry, National Yang-Ming University, Taipei, Taiwan, China
- Lab of Adult Stem Cell and Tissue Regeneration, National Defense Medical Center, Taipei, Taiwan, China
| | - Chia-Yu Wang
- Graduate Institute of Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, China
| | - Raju Poongodi
- Lab of Adult Stem Cell and Tissue Regeneration, National Defense Medical Center, Taipei, Taiwan, China
| | - Nien-Hsien Liou
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, China
| | - Jiang-Chuan Liu
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, China
| | - Ming-Lun Hsu
- School of Dentistry, National Yang-Ming University, Taipei, Taiwan, China
| | - Po-Da Hong
- Graduate Institute of Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, China
| | - Shih-Fang Yang
- School of Dentistry, National Yang-Ming University, Taipei, Taiwan, China.
| | - Meng-Lun Liu
- Department of Surgery, Cheng Hsin General Hospital, Taipei, Taiwan, China.
| |
Collapse
|
8
|
Chooi WH, Chan BP. Compression loading-induced stress responses in intervertebral disc cells encapsulated in 3D collagen constructs. Sci Rep 2016; 6:26449. [PMID: 27197886 PMCID: PMC4873809 DOI: 10.1038/srep26449] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/29/2016] [Indexed: 01/24/2023] Open
Abstract
Cells protect themselves from stresses through a cellular stress response. In the interverebral disc, such response was also demonstrated to be induced by various environmental stresses. However, whether compression loading will cause cellular stress response in the nucleus pulposus cells (NPCs) is not well studied. By using an in vitro collagen microencapsulation model, we investigated the effect of compression loading on the stress response of NPCs. Cell viability tests, and gene and protein expression experiments were conducted, with primers for the heat shock response (HSR: HSP70, HSF1, HSP27 and HSP90), and unfolded protein response (UPR: GRP78, GRP94, ATF4 and CHOP) genes and an antibody to HSP72. Different gene expression patterns occurred due to loading type throughout experiments. Increasing the loading strain for a short duration did not increase the stress response genes significantly, but over longer durations, HSP70 and HSP27 were upregulated. Longer loading durations also resulted in a continuous upregulation of HSR genes and downregulation of UPR genes, even after load removal. The rate of apoptosis did not increase significantly after loading, suggesting that stress response genes might play a role in cell survival following mechanical stress. These results demonstrate how mechanical stress might induce and control the expression of HSR and UPR genes in NPCs.
Collapse
Affiliation(s)
- Wai Hon Chooi
- Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, China
| | - Barbara Pui Chan
- Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, China
| |
Collapse
|
9
|
Kruglikov IL, Wollina U. Soft tissue fillers as non-specific modulators of adipogenesis: change of the paradigm? Exp Dermatol 2015; 24:912-5. [PMID: 26309229 DOI: 10.1111/exd.12852] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2015] [Indexed: 12/15/2022]
Abstract
Dermal filler injection is a cornerstone of facial rejuvenation procedures. Based on available data in animal and human studies, we suppose that the activation and proliferation of adipose-derived stem cells and expansion of mature adipocytes play a crucial role in long-term effects of volumizing, tissue tightening and beautification.
Collapse
Affiliation(s)
| | - Uwe Wollina
- Hospital Dresden-Friedrichstadt, Academic Teaching Hospital of the Technical University of Dresden, Dresden, Germany
| |
Collapse
|
10
|
Gao B, Huang Q, Jie Q, Lu WG, Wang L, Li XJ, Sun Z, Hu YQ, Chen L, Liu BH, Liu J, Yang L, Luo ZJ. GPR120: A bi-potential mediator to modulate the osteogenic and adipogenic differentiation of BMMSCs. Sci Rep 2015; 5:14080. [PMID: 26365922 PMCID: PMC4568495 DOI: 10.1038/srep14080] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/18/2015] [Indexed: 12/14/2022] Open
Abstract
Free fatty acids display diverse effects as signalling molecules through GPCRs in addition to their involvement in cellular metabolism. GPR120, a G protein-coupled receptor for long-chain unsaturated fatty acids, has been reported to mediate adipogenesis in lipid metabolism. However, whether GPR120 also mediates osteogenesis and regulates BMMSCs remain unclear. In this study, we showed that GPR120 targeted the bi-potential differentiation of BMMSCs in a ligand dose-dependent manner. High concentrations of TUG-891 (a highly selective agonist of GPR120) promoted osteogenesis via the Ras-ERK1/2 cascade, while low concentrations elevated P38 and increased adipogenesis. The fine molecular regulation of GPR120 was implemented by up-regulating different integrin subunits (α1, α2 and β1; α5 and β3). The administration of high doses of TUG-891 rescued oestrogen-deficient bone loss in vivo, further supporting an essential role of GPR120 in bone metabolism. Our findings, for the first time, showed that GPR120-mediated cellular signalling determines the bi-potential differentiation of BMMSCs in a dose-dependent manner. Additionally, the induction of different integrin subunits was involved in the cytoplasmic regulation of a seesaw-like balance between ERK and p38 phosphorylation. These findings provide new hope for developing novel remedies to treat osteoporosis by adjusting the GPR120-mediated differentiation balance of BMMSCs.
Collapse
Affiliation(s)
- Bo Gao
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Qiang Huang
- Lanzhou General Hospital of Lanzhou Military Command, Lanzhou Gansu, 730050, People's Republic of China
| | - Qiang Jie
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Wei-Guang Lu
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Long Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Xiao-Jie Li
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Zhen Sun
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Ya-Qian Hu
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Li Chen
- KMEB, Molecular Endocrinology, Campusvej 55, DK-5230 Odense M, Denmark
| | - Bao-Hua Liu
- Health Science Center, Shenzhen University, 3688 Nanhai Ave, Shenzhen 518060, People's Republic of China
| | - Jian Liu
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Liu Yang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Zhuo-Jing Luo
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| |
Collapse
|
11
|
Wu CS. Influence of modified polyester on the material properties of collagen-based biocomposites and in vitro evaluation of cytocompatibility. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 48:310-9. [DOI: 10.1016/j.msec.2014.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 10/31/2014] [Accepted: 12/05/2014] [Indexed: 01/29/2023]
|
12
|
Patil S, Paul S. A comprehensive review on the role of various materials in the osteogenic differentiation of mesenchymal stem cells with a special focus on the association of heat shock proteins and nanoparticles. Cells Tissues Organs 2014; 199:81-102. [PMID: 25401759 DOI: 10.1159/000362226] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2014] [Indexed: 11/19/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have important roles in the area of regenerative medicine and clinical applications due to their pluripotent nature. Osteogenic differentiation of MSCs has been studied extensively using various stimulants to develop models of bone repair. There are several factors that enhance the differentiation of MSCs into bone tissues. This review focuses on the effects of various inducers on the osteoblast differentiation of MSCs at different stages of cellular development. We discuss the various growth factors, hormones, vitamins, cytokines, chemical stimulants, and mechanical forces applied in bioreactors that play an essential role in the proliferation, differentiation, and matrix mineralization of stem cells during osteogenesis. Various nanoparticles have also been used recently for the same purpose and the results are promising. Moreover, we review the role of various stresses, including thermal stress, and the subsequent involvement of heat shock proteins as inducers of the proliferation and differentiation of osteoblasts. We also report how various proteasome inhibitors have been shown to induce proliferation and osteogenic differentiation of MSCs in a number of cases. In this communication, the role of peptide-based scaffolds in osteoblast proliferation and differentiation is also reviewed. Based on the reviewed information, this article proposes novel possibilities for the enhancement of proliferation, differentiation, and migration of osteoblasts from MSCs. © 2014 S. Karger AG, Basel.
Collapse
Affiliation(s)
- Supriya Patil
- Structural Biology and Nanomedicine Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, India
| | | |
Collapse
|
13
|
Miyabara S, Yuda Y, Kasashima Y, Kuwano A, Arai K. Regulation of Tenomodulin Expression Via Wnt/β-catenin Signaling in Equine Bone Marrow-derived Mesenchymal Stem Cells. J Equine Sci 2014; 25:7-13. [PMID: 24834008 PMCID: PMC4019198 DOI: 10.1294/jes.25.7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 01/30/2014] [Indexed: 01/06/2023] Open
Abstract
Tenomodulin has been recognized as a biomarker for tendon differentiation, and its gene expression is regulated by several
transcription factors including Scleraxis and Mohawk. In this study, we found a novel regulatory mechanism of tenomodulin
expression. Equine bone marrow-derived mesenchymal stem cells (BMSCs) in monolayer culture showed a low mRNA level of tenomodulin
in comparison with the level in the tendon. When cultured in collagen gel containing a glycogen synthase kinase-3 (GSK-3)
inhibitor (BIO), expression of tenomodulin in BMSCs increased up to the level in the tendon. Participation of GSK-3 in its gene
expression was further demonstrated by a gene silencing experiment with small interference RNA corresponding to GSK-3, suggesting
that Wnt/β-catenin signaling mediated expression of tenomodulin. These results were confirmed by nuclear translocation of
β-catenin in BIO-treated BMSCs cultured in collagen gel. Under this culture condition, expression of tenomodulin-related
transcription factors including Scleraxis and Mohawk was not affected, suggesting that Wnt/β-catenin signaling was independent
from these transcription factors. Additionally, BIO strongly enhanced expression of type XIV collagen in collagen-embedded BMSCs
up to the level in the tendon, and other tendon-related extracellular matrix components such as decorin and fibromodulin were also
upregulated. Taken together, these results indicated that activation of Wnt/β-catenin signaling could induce differentiation of
BMSCs into tenomodulin-expressing tendon cells in collagen gel.
Collapse
Affiliation(s)
- Shihori Miyabara
- Department of Tissue Physiology, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Yohei Yuda
- Department of Tissue Physiology, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Yoshinori Kasashima
- Laboratory of Clinical Science and Pathobiology, Equine Research Institute, Japan Racing Association, Tochigi 320-8056, Japan
| | - Atsutoshi Kuwano
- Laboratory of Clinical Science and Pathobiology, Equine Research Institute, Japan Racing Association, Tochigi 320-8056, Japan
| | - Katsuhiko Arai
- Department of Tissue Physiology, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| |
Collapse
|
14
|
Leung M, Cooper A, Jana S, Tsao CT, Petrie TA, Zhang M. Nanofiber-Based in Vitro System for High Myogenic Differentiation of Human Embryonic Stem Cells. Biomacromolecules 2013; 14:4207-16. [DOI: 10.1021/bm4009843] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Matthew Leung
- Department of Materials Science & Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Ashleigh Cooper
- Department of Materials Science & Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Soumen Jana
- Department of Materials Science & Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Ching-Ting Tsao
- Department of Materials Science & Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Timothy A. Petrie
- Department
of Pharmacology, University of Washington, Seattle, Washington 98195, United States
| | - Miqin Zhang
- Department of Materials Science & Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
15
|
Volloch V, Olsen BR. Why cellular stress suppresses adipogenesis in skeletal tissue, but is ineffective in adipose tissue: control of mesenchymal cell differentiation via integrin binding sites in extracellular matrices. Matrix Biol 2013; 32:365-71. [PMID: 23792045 DOI: 10.1016/j.matbio.2013.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 01/16/2023]
Abstract
This Perspective addresses one of the major puzzles of adipogenesis in adipose tissue, namely its resistance to cellular stress. It introduces a concept of "density" of integrin binding sites in extracellular matrix, proposes a cellular signaling explanation for the observed effects of matrix elasticity and of cell shape on mesenchymal stem cell differentiation, and discusses how specialized integrin binding sites in collagen IV-containing matrices guard two pivotal physiological and evolutionary processes: stress-resistant adipogenesis in adipose tissues and preservation of pluripotency of mesenchymal stem-like cells in their storage niches. Finally, it proposes strategies to suppress adipogenesis in adipose tissues.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA.
| | | |
Collapse
|
16
|
Avital I, Langan RC, Summers TA, Steele SR, Waldman SA, Backman V, Yee J, Nissan A, Young P, Womeldorph C, Mancusco P, Mueller R, Noto K, Grundfest W, Bilchik AJ, Protic M, Daumer M, Eberhardt J, Man YG, Brücher BL, Stojadinovic A. Evidence-based Guidelines for Precision Risk Stratification-Based Screening (PRSBS) for Colorectal Cancer: Lessons learned from the US Armed Forces: Consensus and Future Directions. J Cancer 2013; 4:172-92. [PMID: 23459409 PMCID: PMC3584831 DOI: 10.7150/jca.5834] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 02/01/2013] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cause of cancer-related death in the United States (U.S.), with estimates of 143,460 new cases and 51,690 deaths for the year 2012. Numerous organizations have published guidelines for CRC screening; however, these numerical estimates of incidence and disease-specific mortality have remained stable from years prior. Technological, genetic profiling, molecular and surgical advances in our modern era should allow us to improve risk stratification of patients with CRC and identify those who may benefit from preventive measures, early aggressive treatment, alternative treatment strategies, and/or frequent surveillance for the early detection of disease recurrence. To better negotiate future economic constraints and enhance patient outcomes, ultimately, we propose to apply the principals of personalized and precise cancer care to risk-stratify patients for CRC screening (Precision Risk Stratification-Based Screening, PRSBS). We believe that genetic, molecular, ethnic and socioeconomic disparities impact oncological outcomes in general, those related to CRC, in particular. This document highlights evidence-based screening recommendations and risk stratification methods in response to our CRC working group private-public consensus meeting held in March 2012. Our aim was to address how we could improve CRC risk stratification-based screening, and to provide a vision for the future to achieving superior survival rates for patients diagnosed with CRC.
Collapse
Affiliation(s)
- Itzhak Avital
- 1. Bon Secours Cancer Institute, Richmond VA ; 2. Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD ; 3. United States Military Cancer Institute, Bethesda, MD ; 4. INCORE, International Consortium of Research Excellence of the Theodor-Billroth-Academy, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Jiang B, Mason J, Jewett A, Liu ML, Chen W, Qian J, Ding Y, Ding S, Ni M, Zhang X, Man YG. Tumor-infiltrating immune cells: triggers for tumor capsule disruption and tumor progression? Int J Med Sci 2013; 10:475-97. [PMID: 23532368 PMCID: PMC3607233 DOI: 10.7150/ijms.5798] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 02/25/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Our previous studies of human breast and prostate cancer have shown that aberrant immune cell infiltration is associated with focal tumor capsule disruption and tumor cell budding that facilitate invasion and metastasis. Our current study attempted to determine whether aberrant immune cell infiltration would have similar impact on colorectal cancer (CRC). MATERIALS AND METHODS Tissue sections from 100 patients with primary CRC were assessed for the frequencies of focal basement membrane (BM) disruption, muscularis mucosa (MM) fragmentation, and tumor cell dissemination in epithelial structures adjacent and distal to infiltrating lymphoid aggregates using a panel of biomarkers and quantitative digital imaging. RESULTS Our study revealed: (1) epithelial structures adjacent to lymphoid follicles or aggregates had a significantly higher (p<0.001) frequency of focally disrupted BM, dissociated epithelial cells in the stroma, disseminated epithelial cells within lymphatic ducts or blood vessels, and fragmented MM than their distal counterparts, (2) a majority of dissociated epithelial cells within the stroma or vascular structures were immediately subjacent to or physically associated with infiltrating immune cells, (3) the junctions of pre-invasive and invasive lesions were almost exclusively located at sites adjacent to lymphoid follicles or aggregates, (4) infiltrating immune cells were preferentially associated with epithelial capsules that show distinct degenerative alterations, and (5) infiltrating immune cells appeared to facilitate tumor stem cell proliferation, budding, and dissemination. CONCLUSIONS Aberrant immune cell infiltration may have the same destructive impact on the capsule of all epithelium-derived tumors. This, in turn, may selectively favor the proliferation of tumor stem or progenitor cells overlying these focal disruptions. These proliferating epithelial tumor cells subsequently disseminate from the focal disruption leading to tumor invasion and metastasis.
Collapse
Affiliation(s)
- Bin Jiang
- National Medical Centre of Colorectal Disease, The Third Affiliated Hospital, Nanjing University of Traditional Chinese Medicine TCM, Nanjing, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Analysis of the transcriptome of differentiating and non-differentiating preadipocytes from rats and humans by next generation sequencing. Mol Cell Biochem 2012; 369:175-81. [DOI: 10.1007/s11010-012-1380-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 06/20/2012] [Indexed: 10/28/2022]
|
19
|
Frith JE, Mills RJ, Hudson JE, Cooper-White JJ. Tailored integrin-extracellular matrix interactions to direct human mesenchymal stem cell differentiation. Stem Cells Dev 2012; 21:2442-56. [PMID: 22455378 DOI: 10.1089/scd.2011.0615] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Integrins provide the primary link between mesenchymal stem cells (MSCs) and their surrounding extracellular matrix (ECM), with different integrin pairs having specificity for different ECM molecules or peptide sequences contained within them. It is widely acknowledged that the type of ECM present can influence MSC differentiation; however, it is yet to be determined how specific integrin-ECM interactions may alter this or how they change during differentiation. We determined that human bone marrow-derived mesenchymal stem cells (hMSCs) express a broad range of integrins in their undifferentiated state and show a dramatic, but transient, increase in the level of α5 integrin on day 7 of osteogenesis and an increase in α6 integrin expression throughout adipogenesis. We used a nonfouling polystyrene-block-poly(ethylene oxide)-copolymer (PS-PEO) surface to present short peptides with defined integrin-binding capabilities (RGD, IKVAV, YIGSR, and RETTAWA) to hMSCs and investigate the effects of such specific integrin-ECM contacts on differentiation. hMSCs cultured on these peptides displayed different morphologies and had varying abilities to differentiate along the osteogenic and adipogenic lineages. The peptide sequences most conducive to differentiation (IKVAV for osteogenesis and RETTAWA and IKVAV for adipogenesis) were not necessarily those that were bound by those integrin subunits seen to increase during differentiation. Additionally, we also determined that presentation of RGD, which is bound by multiple integrins, was required to support long-term viability of hMSCs. Overall we confirm that integrin-ECM contacts change throughout hMSC differentiation and show that surfaces presenting defined peptide sequences can be used to target specific integrins and ultimately influence hMSC differentiation. This platform also provides information for the development of biomaterials capable of directing hMSC differentiation for use in tissue engineering therapies.
Collapse
Affiliation(s)
- Jessica Ellen Frith
- Tissue Engineering and Microfluidics Laboratory, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, Queensland, Australia
| | | | | | | |
Collapse
|
20
|
Hoshiba T, Kawazoe N, Chen G. The balance of osteogenic and adipogenic differentiation in human mesenchymal stem cells by matrices that mimic stepwise tissue development. Biomaterials 2012; 33:2025-31. [DOI: 10.1016/j.biomaterials.2011.11.061] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 11/22/2011] [Indexed: 10/24/2022]
|
21
|
In vitro mineralization of human mesenchymal stem cells on three-dimensional type I collagen versus PLGA scaffolds: a comparative analysis. Plast Reconstr Surg 2011; 127:2301-2311. [PMID: 21617464 DOI: 10.1097/prs.0b013e318213a004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Development of a tissue engineered bone graft requires efficient bioactivity screening of biomaterials in clinically relevant three-dimensional systems. The authors analyzed the relative osteogenic potential of two three-dimensional biomaterials--type I collagen and poly(L-lactide-co-glycolide) (PLGA)--to support in vitro mineralization of human mesenchymal stem cells. METHODS Human mesenchymal stem cells were seeded onto three-dimensional PLGA or type I collagen scaffolds; incubated in osteogenic media; and harvested at 1, 4, and 7 days. Messenger RNA expression was analyzed using quantitative real-time reverse-transcriptase polymerase chain reaction for osteogenic (i.e., alkaline phosphatase, osteocalcin, bone sialoprotein, Runx2/core binding factor α-1) and angiogenic (i.e., vascular endothelial growth factor and interleukin-8) markers. Alkaline phosphatase enzyme activity was measured at 4 and 7 days. Mineralization was detected by alizarin red staining and micro-computed tomographic imaging at 8 and 12 weeks. Mineral composition was analyzed by solid-phase nuclear magnetic resonance spectroscopy. RESULTS Early osteogenic and angiogenic markers, and alkaline phosphatase enzyme activity, were up-regulated on PLGA versus collagen scaffolds. However, long-term mineralization endpoints favored type I collagen. By 8 weeks, human mesenchymal stem cells on collagen exhibited significantly higher mineral density by micro-computed tomographic and alizarin red staining than PLGA scaffolds. Both biomaterials deposited calcium hydroxyapatite as determined by nuclear magnetic resonance spectroscopy. CONCLUSIONS The authors' findings suggest that despite early PLGA induction of osteogenic gene expression, long-term mineralization occurs earlier and to a greater extent on type I collagen, highlighting collagen as a potential bone tissue engineering scaffold in the human mesenchymal stem cell niche. When screening the relative osteoinductive profiles of three-dimensional bone tissue engineering scaffolds in vitro, the authors recommend including long-term endpoints of osteogenesis.
Collapse
|
22
|
Sato-Kusubata K, Jiang Y, Ueno Y, Chun TH. Adipogenic histone mark regulation by matrix metalloproteinase 14 in collagen-rich microenvironments. Mol Endocrinol 2011; 25:745-53. [PMID: 21436261 DOI: 10.1210/me.2010-0429] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Adipogenesis is directed by both transcriptional network and posttranslational modification of chromatin structure. Although adipogenesis in vivo proceeds in collagen-rich extracellular matrix (ECM) environments, the impact of ECM proteins and their modifying enzymes on the epigenetic regulation of adipogenesis has been largely unknown. We aimed to define the role of fibrillar type I collagen and its modifying enzymes in regulating adipogenic chromatin signatures and gene regulation in the in vivo-like settings. Adipogenic cocktail induces a robust increase in the level of protranscriptional acetylated histone H3 at lysine 9 (H3K9ac) within 24 h. When cultured atop fibrillar type I collagen gel, however, H3K9ac levels in differentiating 3T3-L1 cells are substantially reduced. The suppression of adipogenic histone mark in differentiating 3T3-L1 cells is type I collagen density dependent and released by heat denaturing of the subjacent collagen substratum, pointing to the critical role played by the triple-helical structure of type I collagen. By probing adipogenic collagenolysis with a series of proteinase inhibitors, matrix metalloproteinase (MMP) family members are found to be responsible for adipogenic collagenolysis. At the same time, MMP inhibitor specifically blocked the adipogenic induction of H3K9ac. By targeting individual MMP using small interfering RNA oligos, MMP14 was identified as the major adipogenic MMP critical for H3K9 acetylation. Consistently, MMP14-null adipose tissues display diminished protranscriptional histone mark H3K9ac while maintaining repressive histone mark tri-methylated histone H3 at lysine 9 (H3K9me3). Taken together, MMP14-dependent collagenolysis plays the major role in regulating adipogenic histone marks by releasing the epigenetic constraints imposed by fibrillar type I collagen.
Collapse
Affiliation(s)
- Kaori Sato-Kusubata
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
23
|
Mala JGS, Rose C. Interactions of heat shock protein 47 with collagen and the stress response: An unconventional chaperone model? Life Sci 2010; 87:579-86. [DOI: 10.1016/j.lfs.2010.09.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 08/31/2010] [Accepted: 09/08/2010] [Indexed: 12/25/2022]
|
24
|
Mauney J, Olsen BR, Volloch V. Matrix remodeling as stem cell recruitment event: a novel in vitro model for homing of human bone marrow stromal cells to the site of injury shows crucial role of extracellular collagen matrix. Matrix Biol 2010; 29:657-63. [PMID: 20828613 PMCID: PMC6817338 DOI: 10.1016/j.matbio.2010.08.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 06/28/2010] [Accepted: 08/17/2010] [Indexed: 01/16/2023]
Abstract
The goal of the present study was to devise an in vitro model suitable for investigations of the homing of mesenchymal stem cells to sites of injury. Such a model was designed on the basis of a "transwell" assay, with an insert seeded with human bone marrow stromal cells and a well with a desired cell type. To mimic physiological environment and to simulate "injury", cells in a well were maintained not only on tissue culture plastic but also on collagens I and IV, major matrix components in musculoskeletal and adipose tissues respectively, and subjected to a severe thermal stress. The results obtained showed a massive translocation of bone marrow stromal cells through the inserts' membrane toward the "injury" site. Unexpectedly, it emerged that collagen matrix is essential in producing such a migration. The results obtained suggest that upon injury cells secrete a substance which interacts with collagen matrix to produce a homing agent. The substance in question appears to be a protease and its interaction with the collagen matrix appears to be a digestion of the latter into fragments shown to be chemotactic. Both AEBSF, an inhibitor of serine proteases, and leupeptin, an inhibitor of cysteine proteases as well as of trypsin-like serine proteases, but not the broad spectrum MMP inhibitor marimastat, significantly inhibit the observed homing effect and this inhibition is not due to cytotoxicity. Moreover, immunoprecipitation of HTRA1, a trypsin-like serine protease known to be secreted by cells differentiating into all three major mesenchymal lineages and by stressed cells in general and shown to degrade a number of matrix proteins including collagen, significantly diminished the homing effect. The data suggest that this protease is a major contributor to the observed chemotaxis of bone marrow stromal cells. The present study indicates that collagen fragments can mediate the migration of bone marrow stromal cells. The results also suggest that, at least in musculoskeletal and in adipose tissues, matrix remodeling occurrences, usually closely associated with tissue remodeling, should also be regarded as potential stem cells recruitment events.
Collapse
|
25
|
Lu Z, Zreiqat H. The Osteoconductivity of Biomaterials Is Regulated by Bone Morphogenetic Protein 2 Autocrine Loop Involving α2β1 Integrin and Mitogen-Activated Protein Kinase/Extracellular Related Kinase Signaling Pathways. Tissue Eng Part A 2010; 16:3075-84. [DOI: 10.1089/ten.tea.2010.0204] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- ZuFu Lu
- Biomaterials and Tissue Engineering Research Unit, School of AMME, The University of Sydney, Sydney, Australia
| | - Hala Zreiqat
- Biomaterials and Tissue Engineering Research Unit, School of AMME, The University of Sydney, Sydney, Australia
| |
Collapse
|
26
|
Abrahamsson CK, Yang F, Park H, Brunger JM, Valonen PK, Langer R, Welter JF, Caplan AI, Guilak F, Freed LE. Chondrogenesis and mineralization during in vitro culture of human mesenchymal stem cells on three-dimensional woven scaffolds. Tissue Eng Part A 2010; 16:3709-18. [PMID: 20673022 DOI: 10.1089/ten.tea.2010.0190] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human mesenchymal stem cells (hMSCs) and three-dimensional (3D) woven poly(ɛ-caprolactone) (PCL) scaffolds are promising tools for skeletal tissue engineering. We hypothesized that in vitro culture duration and medium additives can individually and interactively influence the structure, composition, mechanical, and molecular properties of engineered tissues based on hMSCs and 3D poly(ɛ-caprolactone). Bone marrow hMSCs were suspended in collagen gel, seeded on scaffolds, and cultured for 1, 21, or 45 days under chondrogenic and/or osteogenic conditions. Structure, composition, biomechanics, and gene expression were analyzed. In chondrogenic medium, cartilaginous tissue formed by day 21, and hypertrophic mineralization was observed in the newly formed extracellular matrix at the interface with underlying scaffold by day 45. Glycosaminoglycan, hydroxyproline, and calcium contents, and alkaline phosphatase activity depended on culture duration and medium additives, with significant interactive effects (all p < 0.0001). The 45-day constructs exhibited mechanical properties on the order of magnitude of native articular cartilage (aggregate, Young's, and shear moduli of 0.15, 0.12, and 0.033 MPa, respectively). Gene expression was characteristic of chondrogenesis and endochondral bone formation, with sequential regulation of Sox-9, collagen type II, aggrecan, core binding factor alpha 1 (Cbfα1)/Runx2, bone sialoprotein, bone morphogenetic protein-2, and osteocalcin. In contrast, osteogenic medium produced limited osteogenesis. Long-term culture of hMSC on 3D scaffolds resulted in chondrogenesis and regional mineralization at the interface between soft, newly formed engineered cartilage, and stiffer underlying scaffold. These findings merit consideration when developing grafts for osteochondral defect repair.
Collapse
Affiliation(s)
- Christoffer K Abrahamsson
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hoshiba T, Kawazoe N, Tateishi T, Chen G. Development of extracellular matrices mimicking stepwise adipogenesis of mesenchymal stem cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2010; 22:3042-3047. [PMID: 20518038 DOI: 10.1002/adma.201000038] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Affiliation(s)
- Takashi Hoshiba
- Biomaterials Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | | | | | | |
Collapse
|
28
|
Beta-tricalcium phosphate exerts osteoconductivity through α2β1 integrin and down-stream MAPK/ERK signaling pathway. Biochem Biophys Res Commun 2010; 394:323-9. [DOI: 10.1016/j.bbrc.2010.02.178] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 02/27/2010] [Indexed: 11/19/2022]
|
29
|
Mauney J, Volloch V. Adult human bone marrow stromal cells regulate expression of their MMPs and TIMPs in differentiation type-specific manner. Matrix Biol 2009; 29:3-8. [PMID: 19765656 DOI: 10.1016/j.matbio.2009.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 08/16/2009] [Accepted: 09/08/2009] [Indexed: 12/14/2022]
Abstract
Previously, we described a profound impact of structural conformation of collagen matrix on osteogenic and adipogenic differentiation of bone marrow stromal cells. Thus, a marginal p38-independent adipogenesis on native collagen I matrix contrasts with an efficient p38-dependent differentiation on denatured collagen I. An efficient Hsp90-dependent osteogenesis occurs on native collagen I matrix but not on its denatured counterpart where it is insignificant and proceeds in an Hsp90-independent manner. Whereas only marginal osteogenesis and no detectable adipogenesis of bone marrow stromal cells occur on native collagen IV, the same matrix supports a highly efficient adipogenesis in denatured structural state. The present study addresses the opposite direction in the flow of cell-matrix interaction, namely the cells' influence on structural state of collagen matrix, and tests the possibility that differentiating bone marrow stromal cells may adjust the expression phenotype of MMP and TIMP in such a way that, if translated into matrix modification, would facilitate the maintenance of collagen matrix in or its modification into structural state optimal for the ongoing differentiation process. The results obtained indicate that this is indeed the case. In bone marrow stromal cells stimulated to undergo adipogenesis the expression of MMP increases and that of TIMP decreases. In cells induced to undergo osteogenesis the opposite is true: MMP/TIMP expression is adjusted in a manner that, if translated into matrix modification, could promote the native structural conformation optimal for this type of differentiation. The results obtained also indicate that the observed adjustment in MMP/TIMP expression phenotype might be an early differentiation event and that differentiation stimulation alone might be sufficient to trigger it even on matrices not favorable to a given type of differentiation. The findings of the present study raise significant questions and indicate directions for further experimentation.
Collapse
|
30
|
Human bone marrow-derived stromal cells show highly efficient stress-resistant adipogenesis on denatured collagen IV matrix but not on its native counterpart: implications for obesity. Matrix Biol 2009; 29:9-14. [PMID: 19761844 DOI: 10.1016/j.matbio.2009.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 08/16/2009] [Accepted: 09/08/2009] [Indexed: 11/23/2022]
Abstract
Collagen IV is the major matrix component associated with differentiating adipocytes in adipose tissues, and the understanding of its contribution in adipogenic differentiation could be important for elucidation of mechanisms and processes driving the obesity. Therefore, in the light of our previous findings of differential effects of structural conformation of collagen I matrix on differentiation of bone marrow stromal cells, we investigated whether similar phenomenon occurs on collagen IV matrix in native and denatured structural states. The results of the present study show that native collagen IV is unsupportive of adipogenic differentiation and very little if any adipogenesis occurs on this matrix in the presence of adipogenic stimuli. In sharp contrast to native collagen IV, the same matrix in denatured structural state drives highly efficient adipogenic differentiation suggesting that it might be the major driver of adipogenesis in adipose tissues and that the ratio of native to denatured matrix might regulate the intensity of adipogenesis and possibly underlies the obesity. In contrast to observations that adipogenesis on denatured collagen I (collagen I is the major matrix component in musculoskeletal tissues) is suppressed by stress, adipogenesis on denatured collagen IV appears to be stress-resistant suggesting an explanation for the observed ineffectiveness of physical exercise, i.e. mechanical stress, in the reduction of adipose tissues. The obesity was shown to be associated with overproduction of MMPs and decline in levels of TIMPs. Such a shift in MMP/TIMP balance was considered a consequence of the pathology. In the light of the present study, however, this shift might constitute the primary source of the decease. The findings of the present study suggest strategies for the treatment of obesity, raise significant questions and indicate directions for further experimentation.
Collapse
|
31
|
Mauney J, Gillen K, Volloch V. Progression of human bone marrow stromal cells into both osteogenic and adipogenic lineages is differentially regulated by structural conformation of collagen I matrix via distinct signaling pathways. Matrix Biol 2009; 28:239-50. [PMID: 19375503 PMCID: PMC6817339 DOI: 10.1016/j.matbio.2009.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 02/17/2009] [Accepted: 04/08/2009] [Indexed: 10/20/2022]
Abstract
Adult human bone marrow stromal cells (BMSCs) containing or consisting of mesenchymal stem cells (MSCs) are an important source in tissue homeostasis and repair. Although many processes involved in their differentiation into diverse lineages have been deciphered, substantial inroads remain to be gained to synthesize a complete regulatory picture. The present study suggests that structural conformation of extracellular collagen I, the major organic matrix component in musculoskeletal tissues, plays, along with differentiation stimuli, a decisive role in the selection of differentiation lineage. It introduces a novel concept which proposes that structural transition of collagen I matrix regulates cell differentiation through distinct signaling pathways specific for the structural state of the matrix. Thus, on native collagen I matrix inefficient adipogenesis is p38-independent, whereas on its denatured counterpart, an efficient adipogenesis is primarily regulated by p38 kinase. Inversely, osteogenic differentiation occurs efficiently on native, but not on denatured collagen I matrix, with a low commencement threshold on the former and a substantially higher one on the latter. Osteogenesis on collagen I matrices in both structural conformations is fully dependent on ERK. However, whereas on native collagen I matrix osteogenic differentiation is Hsp90-dependent, on denatured collagen I matrix it is Hsp90-independent. The matrix conformation-mediated regulation appears to be one of the mechanisms determining differentiation lineage of BMSCs. It allows a novel interpretation of the bone remodeling cycle, explains the marked physiological aging-related adipogenic shift in musculoskeletal tissues, and can be a principal contributor to adipogenic shift seen in a number of clinical disorders.
Collapse
|