1
|
von Knorring T, Ihlemann TB, Blanche P, Reichl C, Israelsen NM, Olesen CM, Yüksel YT, Mogensen M. Normal and melanoma skin visualized, quantified and compared by in vivo photoacoustic imaging. PHOTOACOUSTICS 2025; 42:100693. [PMID: 39974209 PMCID: PMC11836482 DOI: 10.1016/j.pacs.2025.100693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/27/2024] [Accepted: 01/23/2025] [Indexed: 02/21/2025]
Abstract
Photoacoustic imaging (PAI) shows promise for skin cancer diagnosis by detecting chromophores like melanin, hemoglobin, lipids, and collagen. While most studies focus on malignant lesions, understanding normal skin variability across anatomical regions is crucial for validating PAI's clinical application and its use in melanoma diagnosis. We assessed normal skin in 20 healthy volunteers from three different body locations using a clinical PAI system and compared suspicious looking pigmented skin lesions, including melanomas, to adjacent normal skin (n = 74). Higher deoxyhemoglobin levels were observed in the ankle compared to the cheek and volar forearm, while melanin, lipids, and collagen showed minimal variation. Patients with malignant lesions had significantly higher deoxyhemoglobin levels (p = 0.001) than adjacent normal skin, a difference not seen in benign lesions. These findings suggest that PAI may help diagnose malignancies by identifying increased vascularity in skin cancers, while anatomical differences should be considered during diagnostic work-up.
Collapse
Affiliation(s)
- Terese von Knorring
- Department of Dermatology, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Tobias Buhl Ihlemann
- Department of Dermatology, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Paul Blanche
- Section of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | | | - Niels Møller Israelsen
- DTU Electro, Department of Electrical and Photonics Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Caroline Meyer Olesen
- Department of Dermatology, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Yasemin Topal Yüksel
- Department of Dermatology, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Mette Mogensen
- Department of Dermatology, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Dept of Clinical Medicine, University of Copenhagen, Denmark
| |
Collapse
|
2
|
Artamonova N, Kafka M, Faiss L, Avetisyan D, Puche Sanz I, La Bombarda G, Iacono G, Zattoni F, Steiner E, D’Elia C, Pycha A, Ladurner M, Jagodic S, Gandaglia G, Heidegger I. Impact of Renin-Angiotensin System Inhibitors on Disease Characteristics in Patients with Localized Prostate Cancer Treated with Radical Prostatectomy: A European Association of Urology Young Academic Urologists Prostate Cancer Working Group Multi-institutional Study. EUR UROL SUPPL 2024; 69:105-111. [PMID: 39430410 PMCID: PMC11490865 DOI: 10.1016/j.euros.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2024] [Indexed: 10/22/2024] Open
Abstract
Background and objective Collagen biosynthesis is intricately involved in the development and progression of solid tumors. Renin-angiotensin system inhibitors (RASi) impede TGF-β-mediated collagen synthesis in tumors by hindering activation of the angiotensin receptor. Our aim was to investigate a potential association between RASi use and the aggressiveness of prostate cancer (PCa). Methods We conducted a retrospective multicenter analysis for a cohort of 1250 patients with PCa who underwent radical prostatectomy (RP) between 1990 and 2023 in four European high-volume centers. The study cohort comprised 625 RASi-treated patients and 625 age-matched RASi-naïve patients. Data for various parameters were collected, including age at RP, body mass index (BMI), prostate volume, prostate-specific antigen (PSA), percentage of free PSA, Gleason score (GS) at biopsy and RP, TNM stage, and the rate of biochemical recurrence (BCR). Clinical parameters for patients with and without RASi treatment were documented. Differences between the groups were compared using a Mann-Whitney U test and χ2 tests. Survival analyses were performed using the Kaplan-Meier method. Key findings and limitations As expected, the RASi group had higher BMI levels than the RASi-naïve group (p < 0.001). However, RASi use was not associated with key markers of PCa aggressiveness such as GS upgrading from biopsy to RP (p = 0.089), surgical margin status (p = 0.109), and lymph node involvement (p = 0.33). Moreover, there were no significant differences between the groups in BCR incidence (p = 0.258) or the time to BCR (p = 0.683). Conclusions and clinical implications Our findings indicate that RASi therapy does not have a significant effect on the biological aggressiveness of PCa. Patient summary We analyzed data for 1250 patients with prostate cancer and found that the use of a commonly prescribed high blood pressure medication was not associated with a less aggressive form of localized prostate cancer.
Collapse
Affiliation(s)
| | - Mona Kafka
- Department of Urology, Medical University Innsbruck, Innsbruck, Austria
| | - Laura Faiss
- Department of Urology, Medical University Innsbruck, Innsbruck, Austria
| | - David Avetisyan
- UGC Urología, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Ignacio Puche Sanz
- UGC Urología, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | | | - Gennaio Iacono
- Department of Urology, University of Padova, Padova, Italy
| | - Fabio Zattoni
- Department of Urology, University of Padova, Padova, Italy
- Department of Medicine, University of Padova, Padua, Italy
| | - Eberhard Steiner
- Department of Urology, Medical University Innsbruck, Innsbruck, Austria
| | - Caroline D’Elia
- Department of Urology, Zentralkankenhaus Bozen, Bozen, Italy
| | - Armin Pycha
- Department of Urology, Zentralkankenhaus Bozen, Bozen, Italy
| | - Michael Ladurner
- Department of Urology, Medical University Innsbruck, Innsbruck, Austria
| | - Samed Jagodic
- Department of Urology, University of Tuzla, Tuzla, Bosnia and Herzegovina
| | - Giorgio Gandaglia
- Department of Urology, Urological Research Institute Vita-Salute University and San Raffaele Hospital, Milan, Italy
| | - Isabel Heidegger
- Department of Urology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
3
|
Ahuja S, Zaheer S. Multifaceted TGF-β signaling, a master regulator: From bench-to-bedside, intricacies, and complexities. Cell Biol Int 2024; 48:87-127. [PMID: 37859532 DOI: 10.1002/cbin.12097] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/08/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Physiological embryogenesis and adult tissue homeostasis are regulated by transforming growth factor-β (TGF-β), an evolutionarily conserved family of secreted polypeptide factors, acting in an autocrine and paracrine manner. The role of TGF-β in inflammation, fibrosis, and cancer is complex and sometimes even contradictory, exhibiting either inhibitory or promoting effects depending on the stage of the disease. Under pathological conditions, especially fibrosis and cancer, overexpressed TGF-β causes extracellular matrix deposition, epithelial-mesenchymal transition, cancer-associated fibroblast formation, and/or angiogenesis. In this review article, we have tried to dive deep into the mechanism of action of TGF-β in inflammation, fibrosis, and carcinogenesis. As TGF-β and its downstream signaling mechanism are implicated in fibrosis and carcinogenesis blocking this signaling mechanism appears to be a promising avenue. However, targeting TGF-β carries substantial risk as this pathway is implicated in multiple homeostatic processes and is also known to have tumor-suppressor functions. There is a need for careful dosing of TGF-β drugs for therapeutic use and patient selection.
Collapse
Affiliation(s)
- Sana Ahuja
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| |
Collapse
|
4
|
The mechanical phenotypic plasticity of melanoma cell: an emerging driver of therapy cross-resistance. Oncogenesis 2023; 12:7. [PMID: 36774337 PMCID: PMC9922263 DOI: 10.1038/s41389-023-00452-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/13/2023] Open
Abstract
Advanced cutaneous melanoma is the deadliest form of skin cancer and one of the most aggressive human cancers. Targeted therapies (TT) against BRAF mutated melanoma and immune checkpoints blockade therapies (ICB) have been a breakthrough in the treatment of metastatic melanoma. However, therapy-driven resistance remains a major hurdle in the clinical management of the metastatic disease. Besides shaping the tumor microenvironment, current treatments impact transition states to promote melanoma cell phenotypic plasticity and intratumor heterogeneity, which compromise treatment efficacy and clinical outcomes. In this context, mesenchymal-like dedifferentiated melanoma cells exhibit a remarkable ability to autonomously assemble their own extracellular matrix (ECM) and to biomechanically adapt in response to therapeutic insults, thereby fueling tumor relapse. Here, we review recent studies that highlight mechanical phenotypic plasticity of melanoma cells as a hallmark of adaptive and non-genetic resistance to treatment and emerging driver in cross-resistance to TT and ICB. We also discuss how targeting BRAF-mutant dedifferentiated cells and ECM-based mechanotransduction pathways may overcome melanoma cross-resistance.
Collapse
|
5
|
Jurj A, Ionescu C, Berindan-Neagoe I, Braicu C. The extracellular matrix alteration, implication in modulation of drug resistance mechanism: friends or foes? J Exp Clin Cancer Res 2022; 41:276. [PMID: 36114508 PMCID: PMC9479349 DOI: 10.1186/s13046-022-02484-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/01/2022] [Indexed: 11/10/2022] Open
Abstract
The extracellular matrix (ECM) is an important component of the tumor microenvironment (TME), having several important roles related to the hallmarks of cancer. In cancer, multiple components of the ECM have been shown to be altered. Although most of these alterations are represented by the increased or decreased quantity of the ECM components, changes regarding the functional alteration of a particular ECM component or of the ECM as a whole have been described. These alterations can be induced by the cancer cells directly or by the TME cells, with cancer-associated fibroblasts being of particular interest in this regard. Because the ECM has this wide array of functions in the tumor, preclinical and clinical studies have assessed the possibility of targeting the ECM, with some of them showing encouraging results. In the present review, we will highlight the most relevant ECM components presenting a comprehensive description of their physical, cellular and molecular properties which can alter the therapy response of the tumor cells. Lastly, some evidences regarding important biological processes were discussed, offering a more detailed understanding of how to modulate altered signalling pathways and to counteract drug resistance mechanisms in tumor cells.
Collapse
Affiliation(s)
- Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400337, Cluj-Napoca, Romania
| | - Calin Ionescu
- 7Th Surgical Department, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012, Cluj-Napoca, Romania
- Surgical Department, Municipal Hospital, 400139, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400337, Cluj-Napoca, Romania.
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400337, Cluj-Napoca, Romania.
- Research Center for Oncopathology and Translational Medicine (CCOMT), George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, 540139, Targu Mures, Romania.
| |
Collapse
|
6
|
Fromme JE, Zigrino P. The Role of Extracellular Matrix Remodeling in Skin Tumor Progression and Therapeutic Resistance. Front Mol Biosci 2022; 9:864302. [PMID: 35558554 PMCID: PMC9086898 DOI: 10.3389/fmolb.2022.864302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix remodeling in the skin results from a delicate balance of synthesis and degradation of matrix components, ensuring tissue homeostasis. These processes are altered during tumor invasion and growth, generating a microenvironment that supports growth, invasion, and metastasis. Apart from the cellular component, the tumor microenvironment is rich in extracellular matrix components and bound factors that provide structure and signals to the tumor and stromal cells. The continuous remodeling in the tissue compartment sustains the developing tumor during the various phases providing matrices and proteolytic enzymes. These are produced by cancer cells and stromal fibroblasts. In addition to fostering tumor growth, the expression of specific extracellular matrix proteins and proteinases supports tumor invasion after the initial therapeutic response. Lately, the expression and structural modification of matrices were also associated with therapeutic resistance. This review will focus on the significant alterations in the extracellular matrix components and the function of metalloproteinases that influence skin cancer progression and support the acquisition of therapeutic resistance.
Collapse
Affiliation(s)
- Julia E. Fromme
- Department of Dermatology and Venereology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf (MSSO ABCD), Cologne, Germany
| | - Paola Zigrino
- Department of Dermatology and Venereology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- *Correspondence: Paola Zigrino,
| |
Collapse
|
7
|
Peng D, Fu M, Wang M, Wei Y, Wei X. Targeting TGF-β signal transduction for fibrosis and cancer therapy. Mol Cancer 2022; 21:104. [PMID: 35461253 PMCID: PMC9033932 DOI: 10.1186/s12943-022-01569-x] [Citation(s) in RCA: 452] [Impact Index Per Article: 150.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/18/2022] [Indexed: 02/08/2023] Open
Abstract
Transforming growth factor β (TGF-β) has long been identified with its intensive involvement in early embryonic development and organogenesis, immune supervision, tissue repair, and adult homeostasis. The role of TGF-β in fibrosis and cancer is complex and sometimes even contradictory, exhibiting either inhibitory or promoting effects depending on the stage of the disease. Under pathological conditions, overexpressed TGF-β causes epithelial-mesenchymal transition (EMT), extracellular matrix (ECM) deposition, cancer-associated fibroblast (CAF) formation, which leads to fibrotic disease, and cancer. Given the critical role of TGF-β and its downstream molecules in the progression of fibrosis and cancers, therapeutics targeting TGF-β signaling appears to be a promising strategy. However, due to potential systemic cytotoxicity, the development of TGF-β therapeutics has lagged. In this review, we summarized the biological process of TGF-β, with its dual role in fibrosis and tumorigenesis, and the clinical application of TGF-β-targeting therapies.
Collapse
|
8
|
Shin DS, Schroeder ME, Anseth KS. Impact of Collagen Triple Helix Structure on Melanoma Cell Invadopodia Formation and Matrix Degradation upon BRAF Inhibitor Treatment. Adv Healthc Mater 2022; 11:e2101592. [PMID: 34783464 DOI: 10.1002/adhm.202101592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/11/2021] [Indexed: 11/07/2022]
Abstract
A collagen-rich tumor microenvironment (TME) is associated with worse outcomes in cancer patients and contributes to drug resistance in many cancer types. In melanoma, stiff and fibrillar collagen-abundant tissue is observed after failure of therapeutic treatments with BRAF inhibitors. Increased collagen in the TME can affect properties of the extracellular matrix (ECM), including stiffness, adhesiveness, and interaction of integrins with triple helix forming nanostructures. Decoupling these biochemical and biophysical properties of the ECM can lead to a better understanding of how each of these individual properties affect melanoma cancer behavior and drug efficacy. In addition, as drug treatment can induce cancer cell phenotypic switch, cancer cell responsiveness to the TME can be dynamically changed during therapeutic treatments. To investigate cancer cell phenotype changes and the role of the cancer TME, poly(ethylene glycol) (PEG) hydrogels functionalized with collagen mimetic peptides (CMPs) is utilized, or an interpenetrating network (IPN) of type І collagen within the PEG system to culture various melanoma cell lines in the presence or absence of Vemurafenib (PLX4032) drug treatment is prepared. Additionally, the potential of using CMP functionalized PEG hydrogels, which can provide better tunability is explored, to replace the existing invadopodia assay platform based on fluorescent gelatin.
Collapse
Affiliation(s)
- Della S. Shin
- Department of Chemical and Biological Engineering University of Colorado Boulder Boulder CO 80303 USA
| | - Megan E. Schroeder
- Department of Chemical and Biological Engineering University of Colorado Boulder Boulder CO 80303 USA
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering University of Colorado Boulder Boulder CO 80303 USA
- BioFrontiers Institute University of Colorado Boulder Boulder CO 80303 USA
| |
Collapse
|
9
|
Berestjuk I, Lecacheur M, Carminati A, Diazzi S, Rovera C, Prod'homme V, Ohanna M, Popovic A, Mallavialle A, Larbret F, Pisano S, Audebert S, Passeron T, Gaggioli C, Girard CA, Deckert M, Tartare-Deckert S. Targeting Discoidin Domain Receptors DDR1 and DDR2 overcomes matrix-mediated tumor cell adaptation and tolerance to BRAF-targeted therapy in melanoma. EMBO Mol Med 2021; 14:e11814. [PMID: 34957688 PMCID: PMC8819497 DOI: 10.15252/emmm.201911814] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/04/2022] Open
Abstract
Resistance to BRAF/MEK inhibitor therapy in BRAFV600‐mutated advanced melanoma remains a major obstacle that limits patient benefit. Microenvironment components including the extracellular matrix (ECM) can support tumor cell adaptation and tolerance to targeted therapy; however, the underlying mechanisms remain poorly understood. Here, we investigated the process of matrix‐mediated drug resistance (MMDR) in response to BRAFV600 pathway inhibition in melanoma. We demonstrate that physical and structural cues from fibroblast‐derived ECM abrogate anti‐proliferative responses to BRAF/MEK inhibition. MMDR is mediated by drug‐induced linear clustering of phosphorylated DDR1 and DDR2, two tyrosine kinase collagen receptors. Depletion and pharmacological targeting of DDR1 and DDR2 overcome ECM‐mediated resistance to BRAF‐targeted therapy. In xenografts, targeting DDR with imatinib enhances BRAF inhibitor efficacy, counteracts drug‐induced collagen remodeling, and delays tumor relapse. Mechanistically, DDR‐dependent MMDR fosters a targetable pro‐survival NIK/IKKα/NF‐κB2 pathway. These findings reveal a novel role for a collagen‐rich matrix and DDR in tumor cell adaptation and resistance. They also provide important insights into environment‐mediated drug resistance and a preclinical rationale for targeting DDR signaling in combination with targeted therapy in melanoma.
Collapse
Affiliation(s)
- Ilona Berestjuk
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Team MicroCan, Nice, France
| | - Margaux Lecacheur
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Team MicroCan, Nice, France
| | - Alexandrine Carminati
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Team MicroCan, Nice, France
| | - Serena Diazzi
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Team MicroCan, Nice, France
| | - Christopher Rovera
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Team MicroCan, Nice, France
| | - Virginie Prod'homme
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Team MicroCan, Nice, France
| | - Mickael Ohanna
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Team MicroCan, Nice, France
| | - Ana Popovic
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Team MicroCan, Nice, France
| | - Aude Mallavialle
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Team MicroCan, Nice, France
| | - Frédéric Larbret
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Team MicroCan, Nice, France
| | - Sabrina Pisano
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France
| | - Stéphane Audebert
- Aix-Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Thierry Passeron
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Department of Dermatology, Nice, France
| | | | - Christophe A Girard
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Team MicroCan, Nice, France
| | - Marcel Deckert
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Team MicroCan, Nice, France
| | - Sophie Tartare-Deckert
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Team MicroCan, Nice, France
| |
Collapse
|
10
|
Zhang M, Zhang YY, Chen Y, Wang J, Wang Q, Lu H. TGF-β Signaling and Resistance to Cancer Therapy. Front Cell Dev Biol 2021; 9:786728. [PMID: 34917620 PMCID: PMC8669610 DOI: 10.3389/fcell.2021.786728] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
The transforming growth factor β (TGF-β) pathway, which is well studied for its ability to inhibit cell proliferation in early stages of tumorigenesis while promoting epithelial-mesenchymal transition and invasion in advanced cancer, is considered to act as a double-edged sword in cancer. Multiple inhibitors have been developed to target TGF-β signaling, but results from clinical trials were inconsistent, suggesting that the functions of TGF-β in human cancers are not yet fully explored. Multiple drug resistance is a major challenge in cancer therapy; emerging evidence indicates that TGF-β signaling may be a key factor in cancer resistance to chemotherapy, targeted therapy and immunotherapy. Finally, combining anti-TGF-β therapy with other cancer therapy is an attractive venue to be explored for the treatment of therapy-resistant cancer.
Collapse
Affiliation(s)
- Maoduo Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ying Yi Zhang
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Yongze Chen
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jia Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qiang Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hezhe Lu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Fu Y, Saraswat A, Wei Z, Agrawal MY, Dukhande VV, Reznik SE, Patel K. Development of Dual ARV-825 and Nintedanib-Loaded PEGylated Nano-Liposomes for Synergistic Efficacy in Vemurafnib-Resistant Melanoma. Pharmaceutics 2021; 13:pharmaceutics13071005. [PMID: 34371697 PMCID: PMC8308940 DOI: 10.3390/pharmaceutics13071005] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022] Open
Abstract
A novel treatment strategy by co-targeting c-Myc and tumor stroma was explored in vemurafenib-resistant melanoma. BRD4 proteolysis targeting chimera (ARV-825) and nintedanib co-loaded PEGylated nanoliposomes (ARNIPL) were developed to incorporate a synergistic cytotoxic ratio. Both the molecules have extremely poor aqueous solubility. A modified hydration method with citric acid was used to improve the loading of both the molecules in liposomes. ARNIPL with mean particle size 111.1 ± 6.55 nm exhibited more than 90% encapsulation efficiency for both the drugs and was found to be physically stable for a month at 4 °C. Both the molecules and ARNIPL showed significantly higher cytotoxicity, apoptosis and down-regulation of target proteins BRD4 and c-Myc in vemurafenib-resistant cell line (A375R). Vasculogenic mimicry and clonogenic potential of A375R were significantly inhibited by ARNIPL. Tumor growth inhibition in 3D spheroids with reduction of TGF-β1 was observed with ARNIPL treatment. Therefore, ARNIPL could be a promising therapeutic approach for the treatment of vemurafenib-resistant melanoma.
Collapse
|
12
|
Bourgot I, Primac I, Louis T, Noël A, Maquoi E. Reciprocal Interplay Between Fibrillar Collagens and Collagen-Binding Integrins: Implications in Cancer Progression and Metastasis. Front Oncol 2020; 10:1488. [PMID: 33014790 PMCID: PMC7461916 DOI: 10.3389/fonc.2020.01488] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
Cancers are complex ecosystems composed of malignant cells embedded in an intricate microenvironment made of different non-transformed cell types and extracellular matrix (ECM) components. The tumor microenvironment is governed by constantly evolving cell-cell and cell-ECM interactions, which are now recognized as key actors in the genesis, progression and treatment of cancer lesions. The ECM is composed of a multitude of fibrous proteins, matricellular-associated proteins, and proteoglycans. This complex structure plays critical roles in cancer progression: it functions as the scaffold for tissues organization and provides biochemical and biomechanical signals that regulate key cancer hallmarks including cell growth, survival, migration, differentiation, angiogenesis, and immune response. Cells sense the biochemical and mechanical properties of the ECM through specialized transmembrane receptors that include integrins, discoidin domain receptors, and syndecans. Advanced stages of several carcinomas are characterized by a desmoplastic reaction characterized by an extensive deposition of fibrillar collagens in the microenvironment. This compact network of fibrillar collagens promotes cancer progression and metastasis, and is associated with low survival rates for cancer patients. In this review, we highlight how fibrillar collagens and their corresponding integrin receptors are modulated during cancer progression. We describe how the deposition and alignment of collagen fibers influence the tumor microenvironment and how fibrillar collagen-binding integrins expressed by cancer and stromal cells critically contribute in cancer hallmarks.
Collapse
Affiliation(s)
| | | | | | | | - Erik Maquoi
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| |
Collapse
|
13
|
Diazzi S, Tartare-Deckert S, Deckert M. Bad Neighborhood: Fibrotic Stroma as a New Player in Melanoma Resistance to Targeted Therapies. Cancers (Basel) 2020; 12:cancers12061364. [PMID: 32466585 PMCID: PMC7352197 DOI: 10.3390/cancers12061364] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 12/18/2022] Open
Abstract
Current treatments for metastatic cutaneous melanoma include immunotherapies and drugs targeting key molecules of the mitogen-activated protein kinase (MAPK) pathway, which is often activated by BRAF driver mutations. Overall responses from patients with metastatic BRAF mutant melanoma are better with therapies combining BRAF and mitogen-activated protein kinase kinase (MEK) inhibitors. However, most patients that initially respond to therapies develop drug resistance within months. Acquired resistance to targeted therapies can be due to additional genetic alterations in melanoma cells and to non-genetic events frequently associated with transcriptional reprogramming and a dedifferentiated cell state. In this second scenario, it is possible to identify pro-fibrotic responses induced by targeted therapies that contribute to the alteration of the melanoma tumor microenvironment. A close interrelationship between chronic fibrosis and cancer has been established for several malignancies including breast and pancreatic cancers. In this context, the contribution of fibrosis to drug adaptation and therapy resistance in melanoma is rapidly emerging. In this review, we summarize recent evidence underlining the hallmarks of fibrotic diseases in drug-exposed and resistant melanoma, including increased remodeling of the extracellular matrix, enhanced actin cytoskeleton plasticity, high sensitivity to mechanical cues, and the establishment of an inflammatory microenvironment. We also discuss several potential therapeutic options for manipulating this fibrotic-like response to combat drug-resistant and invasive melanoma.
Collapse
Affiliation(s)
- Serena Diazzi
- C3M, Université Côte d’Azur, INSERM, 06204 Nice, France;
- Equipe labellisée Ligue Contre le Cancer 2016, 06204 Nice, France
| | - Sophie Tartare-Deckert
- C3M, Université Côte d’Azur, INSERM, 06204 Nice, France;
- Equipe labellisée Ligue Contre le Cancer 2016, 06204 Nice, France
- Correspondence: (S.T.-D.); (M.D.); Tel.: +33-(0)-489064310 (S.T.-D. & M.D.)
| | - Marcel Deckert
- C3M, Université Côte d’Azur, INSERM, 06204 Nice, France;
- Equipe labellisée Ligue Contre le Cancer 2016, 06204 Nice, France
- Correspondence: (S.T.-D.); (M.D.); Tel.: +33-(0)-489064310 (S.T.-D. & M.D.)
| |
Collapse
|
14
|
Basu R, Kopchick JJ. The effects of growth hormone on therapy resistance in cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:827-846. [PMID: 32382711 PMCID: PMC7204541 DOI: 10.20517/cdr.2019.27] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pituitary derived and peripherally produced growth hormone (GH) is a crucial mediator of longitudinal growth, organ development, metabolic regulation with tissue specific, sex specific, and age-dependent effects. GH and its cognate receptor (GHR) are expressed in several forms of cancer and have been validated as an anti-cancer target through a large body of in vitro, in vivo and epidemiological analyses. However, the underlying molecular mechanisms of GH action in cancer prognosis and therapeutic response had been sparse until recently. This review assimilates the critical details of GH-GHR mediated therapy resistance across different cancer types, distilling the therapeutic implications based on our current understanding of these effects.
Collapse
Affiliation(s)
- Reetobrata Basu
- Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Ohio University, Athens, OH 45701, USA.,Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | - John J Kopchick
- Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Ohio University, Athens, OH 45701, USA.,Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
15
|
Xu S, Xu H, Wang W, Li S, Li H, Li T, Zhang W, Yu X, Liu L. The role of collagen in cancer: from bench to bedside. J Transl Med 2019; 17:309. [PMID: 31521169 PMCID: PMC6744664 DOI: 10.1186/s12967-019-2058-1] [Citation(s) in RCA: 448] [Impact Index Per Article: 74.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/06/2019] [Indexed: 02/06/2023] Open
Abstract
Collagen is the major component of the tumor microenvironment and participates in cancer fibrosis. Collagen biosynthesis can be regulated by cancer cells through mutated genes, transcription factors, signaling pathways and receptors; furthermore, collagen can influence tumor cell behavior through integrins, discoidin domain receptors, tyrosine kinase receptors, and some signaling pathways. Exosomes and microRNAs are closely associated with collagen in cancer. Hypoxia, which is common in collagen-rich conditions, intensifies cancer progression, and other substances in the extracellular matrix, such as fibronectin, hyaluronic acid, laminin, and matrix metalloproteinases, interact with collagen to influence cancer cell activity. Macrophages, lymphocytes, and fibroblasts play a role with collagen in cancer immunity and progression. Microscopic changes in collagen content within cancer cells and matrix cells and in other molecules ultimately contribute to the mutual feedback loop that influences prognosis, recurrence, and resistance in cancer. Nanoparticles, nanoplatforms, and nanoenzymes exhibit the expected gratifying properties. The pathophysiological functions of collagen in diverse cancers illustrate the dual roles of collagen and provide promising therapeutic options that can be readily translated from bench to bedside. The emerging understanding of the structural properties and functions of collagen in cancer will guide the development of new strategies for anticancer therapy.
Collapse
Affiliation(s)
- Shuaishuai Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Huaxiang Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Wenquan Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Shuo Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Hao Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Tianjiao Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Wuhu Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China. .,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China. .,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Liang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China. .,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China. .,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
16
|
Senthebane DA, Jonker T, Rowe A, Thomford NE, Munro D, Dandara C, Wonkam A, Govender D, Calder B, Soares NC, Blackburn JM, Parker MI, Dzobo K. The Role of Tumor Microenvironment in Chemoresistance: 3D Extracellular Matrices as Accomplices. Int J Mol Sci 2018; 19:E2861. [PMID: 30241395 PMCID: PMC6213202 DOI: 10.3390/ijms19102861] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The functional interplay between tumor cells and their adjacent stroma has been suggested to play crucial roles in the initiation and progression of tumors and the effectiveness of chemotherapy. The extracellular matrix (ECM), a complex network of extracellular proteins, provides both physical and chemicals cues necessary for cell proliferation, survival, and migration. Understanding how ECM composition and biomechanical properties affect cancer progression and response to chemotherapeutic drugs is vital to the development of targeted treatments. METHODS 3D cell-derived-ECMs and esophageal cancer cell lines were used as a model to investigate the effect of ECM proteins on esophageal cancer cell lines response to chemotherapeutics. Immunohistochemical and qRT-PCR evaluation of ECM proteins and integrin gene expression was done on clinical esophageal squamous cell carcinoma biopsies. Esophageal cancer cell lines (WHCO1, WHCO5, WHCO6, KYSE180, KYSE 450 and KYSE 520) were cultured on decellularised ECMs (fibroblasts-derived ECM; cancer cell-derived ECM; combinatorial-ECM) and treated with 0.1% Dimethyl sulfoxide (DMSO), 4.2 µM cisplatin, 3.5 µM 5-fluorouracil and 2.5 µM epirubicin for 24 h. Cell proliferation, cell cycle progression, colony formation, apoptosis, migration and activation of signaling pathways were used as our study endpoints. RESULTS The expression of collagens, fibronectin and laminins was significantly increased in esophageal squamous cell carcinomas (ESCC) tumor samples compared to the corresponding normal tissue. Decellularised ECMs abrogated the effect of drugs on cancer cell cycling, proliferation and reduced drug induced apoptosis by 20⁻60% that of those plated on plastic. The mitogen-activated protein kinase-extracellular signal-regulated kinase (MEK-ERK) and phosphoinositide 3-kinase-protein kinase B (PI3K/Akt) signaling pathways were upregulated in the presence of the ECMs. Furthermore, our data show that concomitant addition of chemotherapeutic drugs and the use of collagen- and fibronectin-deficient ECMs through siRNA inhibition synergistically increased cancer cell sensitivity to drugs by 30⁻50%, and reduced colony formation and cancer cell migration. CONCLUSION Our study shows that ECM proteins play a key role in the response of cancer cells to chemotherapy and suggest that targeting ECM proteins can be an effective therapeutic strategy against chemoresistant tumors.
Collapse
Affiliation(s)
- Dimakatso Alice Senthebane
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), UCT Campus, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Tina Jonker
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), UCT Campus, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Arielle Rowe
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), UCT Campus, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Nicholas Ekow Thomford
- Pharmacogenetics Research Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Daniella Munro
- Pharmacogenetics Research Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Collet Dandara
- Pharmacogenetics Research Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Ambroise Wonkam
- Pharmacogenetics Research Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Dhirendra Govender
- Division of Anatomical Pathology, Faculty of Health Sciences, University of Cape Town, NHLS-Groote Schuur Hospital, Cape Town 7925, South Africa.
| | - Bridget Calder
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa.
| | - Nelson C Soares
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa.
| | - Jonathan M Blackburn
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa.
| | - M Iqbal Parker
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Kevin Dzobo
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), UCT Campus, Anzio Road, Observatory, Cape Town 7925, South Africa.
| |
Collapse
|
17
|
Potential therapeutic targets of epithelial-mesenchymal transition in melanoma. Cancer Lett 2017; 391:125-140. [PMID: 28131904 DOI: 10.1016/j.canlet.2017.01.029] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/02/2017] [Accepted: 01/18/2017] [Indexed: 12/16/2022]
Abstract
Melanoma is a cutaneous neoplastic growth of melanocytes with great potential to invade and metastasize, especially when not treated early and effectively. Epithelial-mesenchymal transition (EMT) is the process by which melanocytes lose their epithelial characteristics and acquire mesenchymal phenotypes. Mesenchymal protein expression increases the motility, invasiveness, and metastatic potential of melanoma. Many pathways play a role in promotion of mesenchymal protein expression including RAS/RAF/MEK/ERK, PI3K/AKT/mTOR, Wnt/β-catenin, and several others. Downstream effectors of these pathways induce expression of EMT transcription factors including Snail, Slug, Twist, and Zeb that promote repression of epithelial and induction of mesenchymal character. Emerging research has demonstrated that a variety of small molecule inhibitors as well as phytochemicals can influence the progression of EMT and may even reverse the process, inducing re-expression of epithelial markers. Phytochemicals are of particular interest as supplementary treatment options because of their relatively low toxicities and anti-EMT properties. Modulation of EMT signaling pathways using synthetic small molecules and phytochemicals is a potential therapeutic strategy for reducing the aggressive progression of metastatic melanoma. In this review, we discuss the emerging pathways and transcription factor targets that regulate EMT and evaluate potential synthetic small molecules and naturally occurring compounds that may reduce metastatic melanoma progression.
Collapse
|
18
|
Meeth K, Wang JX, Micevic G, Damsky W, Bosenberg MW. The YUMM lines: a series of congenic mouse melanoma cell lines with defined genetic alterations. Pigment Cell Melanoma Res 2016; 29:590-7. [PMID: 27287723 DOI: 10.1111/pcmr.12498] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/05/2016] [Indexed: 12/18/2022]
Abstract
The remarkable success of immune therapies emphasizes the need for immune-competent cancer models. Elegant genetically engineered mouse models of a variety of cancers have been established, but their effective use is limited by cost and difficulties in rapidly generating experimental data. Some mouse cancer cell lines are transplantable to immunocompetent host mice and have been utilized extensively to study cancer immunology. Here, we describe the Yale University Mouse Melanoma (YUMM) lines, a comprehensive system of mouse melanoma cell lines that are syngeneic to C57BL/6, have well-defined human-relevant driver mutations, and are genomically stable. This will be a useful tool for the study of tumor immunology and genotype-specific cancer biology.
Collapse
Affiliation(s)
- Katrina Meeth
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Jake Xiao Wang
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Goran Micevic
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - William Damsky
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Marcus W Bosenberg
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA. .,Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
19
|
Vemurafenib resistance increases melanoma invasiveness and modulates the tumor microenvironment by MMP-2 upregulation. Pharmacol Res 2016; 111:523-533. [PMID: 27436149 DOI: 10.1016/j.phrs.2016.07.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/11/2016] [Accepted: 07/14/2016] [Indexed: 12/14/2022]
Abstract
The BRAF(V600E) mutation confers constitutive kinase activity and accounts for >90% of BRAF mutations in melanoma. This genetic alteration is a current therapeutic target; however, the antitumorigenic effects of the BRAF(V600E) inhibitor vemurafenib are short-lived and the majority of patients present tumor relapse in a short period after treatment. Characterization of vemurafenib resistance has been essential to the efficacy of next generation therapeutic strategies. Herein, we found that acute BRAF inhibition induced a decrease in active MMP-2, MT1-MMP and MMP-9, but did not modulate the metalloproteinase inhibitors TIMP-2 or RECK in naïve melanoma cells. In vemurafenib-resistant melanoma cells, we observed a lower growth rate and an increase in EGFR phosphorylation followed by the recovery of active MMP-2 expression, a mediator of cancer metastasis. Furthermore, we found a different profile of MMP inhibitor expression, characterized by TIMP-2 downregulation and RECK upregulation. In a 3D spheroid model, the invasion index of vemurafenib-resistant melanoma cells was more evident than in its non-resistant counterpart. We confirmed this pattern in a matrigel invasion assay and demonstrated that use of a matrix metalloproteinase inhibitor reduced the invasion of vemurafenib resistant melanoma cells but not drug naïve cells. Moreover, we did not observe a delimited group of cells invading the dermis in vemurafenib-resistant melanoma cells present in a reconstructed skin model. The same MMP-2 and RECK upregulation profile was found in this 3D skin model containing vemurafenib-resistant melanoma cells. Acute vemurafenib treatment induces the disorganization of collagen fibers and consequently, extracellular matrix remodeling, with this pattern observed even after the acquisition of resistance. Altogether, our data suggest that resistance to vemurafenib induces significant changes in the tumor microenvironment mainly by MMP-2 upregulation, with a corresponding increase in cell invasiveness.
Collapse
|
20
|
Brinckerhoff CE. What are the therapeutic implications of increased collagen expression in melanoma cells treated with vemurafenib? Melanoma Manag 2016; 3:5-8. [PMID: 30190867 DOI: 10.2217/mmt.15.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/06/2015] [Indexed: 11/21/2022] Open
Affiliation(s)
- Constance E Brinckerhoff
- Department of Medicine, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| |
Collapse
|