1
|
Jin C, Zhu M, Ye J, Song Z, Zheng C, Chen W. Autophagy: Are Amino Acid Signals Dependent on the mTORC1 Pathway or Independent? Curr Issues Mol Biol 2024; 46:8780-8793. [PMID: 39194736 DOI: 10.3390/cimb46080519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024] Open
Abstract
Autophagy is a kind of "self-eating" phenomenon that is ubiquitous in eukaryotic cells. It mainly manifests in the damaged proteins or organelles in the cell being wrapped and transported by the autophagosome to the lysosome for degradation. Many factors cause autophagy in cells, and the mechanism of nutrient-deficiency-induced autophagy has been a research focus. It has been reported that amino-acid-deficiency-induced cellular autophagy is mainly mediated through the mammalian rapamycin target protein complex 1 (mTORC1) signaling pathway. In addition, some researchers also found that non-mTORC1 signaling pathways also regulate autophagy, and the mechanism of autophagy occurrence induced by the deficiency of different amino acids is not precisely the same. Therefore, this review aims to summarize the process of various amino acids regulating cell autophagy and provide a narrative review on the molecular mechanism of amino acids regulating autophagy.
Collapse
Affiliation(s)
- Chenglong Jin
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Min Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Jinling Ye
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Zhiwen Song
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Chuntian Zheng
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Wei Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| |
Collapse
|
2
|
Gamallat Y, Alwazan H, Turko R, Dang V, Seyedi S, Ghosh S, Bismar TA. Elevated LAMTOR4 Expression Is Associated with Lethal Prostate Cancer and Its Knockdown Decreases Cell Proliferation, Invasion, and Migration In Vitro. Int J Mol Sci 2024; 25:8100. [PMID: 39125671 PMCID: PMC11312415 DOI: 10.3390/ijms25158100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Late endosomal/lysosomal adaptor, MAPK and mTOR, or LAMTOR, is a scaffold protein complex that senses nutrients and integrates growth factor signaling. The role of LAMTOR4 in tumorigenesis is still unknown. However, there is a considerable possibility that LAMTOR4 is directly involved in tumor cell proliferation and metastasis. In the current study, we investigated the protein expression of LAMTOR4 in a cohort of 314 men who were undergoing transurethral resection of prostate (TURP) consisting of incidental, advanced and castration-resistant cases. We also correlated the data with ERG and PTEN genomic status and clinicopathological features including Gleason score and patients' outcome. Additionally, we performed in vitro experiments utilizing knockdown of LAMTOR4 in prostate cell lines, and we performed mRNA expression assessment using TCGA prostate adenocarcinoma (TCGA-PRAD) to explore the potential differentially expressed genes and pathways associated with LAMTOR4 overexpression in PCa patients. Our data indicate that high LAMTOR4 protein expression was significantly associated with poor overall survival (OS) (HR: 1.44, CI: 1.01-2.05, p = 0.047) and unfavorable cause-specific survival (CSS) (HR: 1.71, CI: 1.06-2.77, p = 0.028). Additionally, when high LAMTOR4 expression was combined with PTEN-negative cases (score 0), we found significantly poorer OS (HR: 2.22, CI: 1.37-3.59, p = 0.001) and CSS (HR: 3.46, CI: 1.86-6.46, p < 0.0001). Furthermore, ERG-positive cases with high LAMTOR4 exhibited lower OS (HR: 1.98, CI: 1.18-3.31, p = 0.01) and CSS (HR: 2.54, CI: 1.32-4.87, p = 0.005). In vitro assessment showed that knockdown of LAMTOR4 decreases PCa cell proliferation, migration, and invasion. Our data further showed that knockdown of LAMTOR4 in the LNCaP cell line significantly dysregulated the β catenin/mTOR pathway and tumorigenesis associated pathways. Inhibiting components of the mTOR pathway, including LAMTOR4, might offer a strategy to inhibit tumor progression and metastasis in prostate cancer.
Collapse
Affiliation(s)
- Yaser Gamallat
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (Y.G.); (R.T.); (V.D.)
- Departments of Oncology, Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Huseen Alwazan
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (Y.G.); (R.T.); (V.D.)
| | - Rasoul Turko
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (Y.G.); (R.T.); (V.D.)
| | - Vincent Dang
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (Y.G.); (R.T.); (V.D.)
| | - Sima Seyedi
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (Y.G.); (R.T.); (V.D.)
- Departments of Oncology, Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sunita Ghosh
- Departments of Mathematical and Statistical Sciences and Medical Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R7, Canada;
| | - Tarek A. Bismar
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (Y.G.); (R.T.); (V.D.)
- Departments of Oncology, Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Tom Baker Cancer Center, Alberta Health Services, Calgary, AB T2N 4N1, Canada
- Prostate Cancer Centre, Rockyview General Hospital, Calgary, AB T2V 1P9, Canada
- Alberta Precision Labs, Rockyview General Hospital, Calgary, AB T2V 1P9, Canada
| |
Collapse
|
3
|
da Silva Brito WA, Ravandeh M, Saadati F, Singer D, Dorsch AD, Schmidt A, Cecchini AL, Wende K, Bekeschus S. Sonicated polyethylene terephthalate nano- and micro-plastic-induced inflammation, oxidative stress, and autophagy in vitro. CHEMOSPHERE 2024; 355:141813. [PMID: 38575082 DOI: 10.1016/j.chemosphere.2024.141813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
The environmental presence of nano- and micro-plastic particles (NMPs) is suspected to have a negative impact on human health. Environmental NMPs are difficult to sample and use in life science research, while commercially available plastic particles are too morphologically uniform. Additionally, this NMPs exposure exhibited biological effects, including cell internalization, oxidative stress, inflammation, cellular adaptation, and genotoxicity. Therefore, developing new methods for producing heterogenous NMPs as observed in the environment is important as reference materials for research. Thus, we aimed to generate and characterize NMPs suspensions using a modified ultrasonic protocol and to investigate their biological effects after exposure to different human cell lines. To this end, we produced polyethylene terephthalate (PET) NMPs suspensions and characterized the particles by dynamic light scattering and scanning electron microscopy. Ultrasound treatment induced polymer degradation into smaller and heterogeneous PET NMPs shape fragments with similar surface chemistry before and after treatment. A polydisperse suspension of PET NMPs with 781 nm in average size and negative surface charge was generated. Then, the PET NMPs were cultured with two human cell lines, A549 (lung) and HaCaT (skin), addressing inhalation and topical exposure routes. Both cell lines interacted with and have taken up PET NMPs as quantified via cellular granularity assay. A549 but not HaCaT cell metabolism, viability, and cell death were affected by PET NMPs. In HaCaT keratinocytes, large PET NMPs provoked genotoxic effects. In both cell lines, PET NMPs exposure affected oxidative stress, cytokine release, and cell morphology, independently of concentration, which we could relate mechanistically to Nrf2 and autophagy activation. Collectively, we present a new PET NMP generation model suitable for studying the environmental and biological consequences of exposure to this polymer.
Collapse
Affiliation(s)
- Walison Augusto da Silva Brito
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Department of General Pathology, State University of Londrina, Rodovia Celso Garcia Cid, Londrina, 86047970, Brazil
| | - Mehdi Ravandeh
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Institute of Biological Information Processing-Bioelectronics (IBI3), Forschungszentrum Juelich, Wilhelm-Johnen-Str., 52428, Jülich, Germany
| | - Fariba Saadati
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Clinic and Policlinic for Dermatology and Venereology, Rostock University Medical Center, Strempelstr. 13, 18057, Rostock, Germany
| | - Debora Singer
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Clinic and Policlinic for Dermatology and Venereology, Rostock University Medical Center, Strempelstr. 13, 18057, Rostock, Germany
| | - Anna Daniela Dorsch
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Anke Schmidt
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Alessandra Lourenço Cecchini
- Department of General Pathology, State University of Londrina, Rodovia Celso Garcia Cid, Londrina, 86047970, Brazil
| | - Kristian Wende
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Clinic and Policlinic for Dermatology and Venereology, Rostock University Medical Center, Strempelstr. 13, 18057, Rostock, Germany.
| |
Collapse
|
4
|
George A, Holderread BM, Lambert BS, Harris JD, McCulloch PC. Post-operative protein supplementation following orthopaedic surgery: A systematic review. SPORTS MEDICINE AND HEALTH SCIENCE 2024; 6:16-24. [PMID: 38463662 PMCID: PMC10918348 DOI: 10.1016/j.smhs.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 03/12/2024] Open
Abstract
Decreased mechanical loading after orthopaedic surgery predisposes patients to develop muscle atrophy. The purpose of this review was to assess whether the evidence supports oral protein supplementation can help decrease postoperative muscle atrophy and/or improve patient outcomes following orthopaedic surgery. A systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). PubMed (MEDLINE), Embase, Scopus, and Web of Science were searched for randomized controlled trials that assessed protein or amino acid supplementation in patients undergoing orthopaedic surgery. Two investigators independently conducted the search using relevant Boolean operations. Primary outcomes included functional or physiologic measures of muscle atrophy or strength. Fourteen studies including 611 patients (224 males, 387 females) were analyzed. Three studies evaluated protein supplementation after ACL reconstruction (ACLR), 3 after total hip arthroplasty (THA), 5 after total knee arthroplasty (TKA), and 3 after surgical treatment of hip fracture. Protein supplementation showed beneficial effects across all types of surgery. The primary benefit was a decrease in muscle atrophy compared to placebo as measured by muscle cross sectional area. Multiple authors also demonstrated improved functional measures and quicker achievement of rehabilitation benchmarks. Protein supplementation has beneficial effects on mitigating muscle atrophy in the postoperative period following ACLR, THA, TKA, and surgical treatment of hip fracture. These effects often correlate with improved functional measures and quicker achievement of rehabilitation benchmarks. Further research is needed to evaluate long-term effects of protein supplementation and to establish standardized population-specific regimens that maximize treatment efficacy in the postoperative period.
Collapse
Affiliation(s)
- Andrew George
- Houston Methodist Orthopedics and Sports Medicine, 6445 Main Street Suite 2300, Houston, TX, 77030, USA
| | - Brendan M. Holderread
- Houston Methodist Orthopedics and Sports Medicine, 6445 Main Street Suite 2300, Houston, TX, 77030, USA
| | - Bradley S. Lambert
- Houston Methodist Orthopedics and Sports Medicine, 6445 Main Street Suite 2300, Houston, TX, 77030, USA
- Houston Methodist Orthopedic Biomechanics Research Laboratory, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Joshua D. Harris
- Houston Methodist Orthopedics and Sports Medicine, 6445 Main Street Suite 2300, Houston, TX, 77030, USA
| | - Patrick C. McCulloch
- Houston Methodist Orthopedics and Sports Medicine, 6445 Main Street Suite 2300, Houston, TX, 77030, USA
- Houston Methodist Orthopedic Biomechanics Research Laboratory, 6670 Bertner Ave, Houston, TX, 77030, USA
| |
Collapse
|
5
|
Bottillo I, Laino L, Azzarà A, Lintas C, Cassano I, Di Lazzaro V, Ursini F, Motolese F, Bargiacchi S, Formicola D, Grammatico P, Gurrieri F. A pathogenic variant in the FLCN gene presenting with pure dementia: is autophagy at the intersection between neurodegeneration and cancer? Front Neurosci 2024; 17:1304080. [PMID: 38249578 PMCID: PMC10796570 DOI: 10.3389/fnins.2023.1304080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/08/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction Folliculin, encoded by FLCN gene, plays a role in the mTORC1 autophagy cascade and its alterations are responsible for the Birt-Hogg-Dubé (BHD) syndrome, characterized by follicle hamartomas, kidney tumors and pneumothorax. Patient and results We report a 74-years-old woman diagnosed with dementia and carrying a FLCN alteration in absence of any sign of BHD. She also carried an alteration of MAT1A gene, which is also implicated in the regulation of mTORC1. Discussion The MAT1A variant could have prevented the development of a FLCN-related oncological phenotype. Conversely, our patient presented with dementia that, to date, has yet to be documented in BHD. Folliculin belongs to the DENN family proteins, which includes C9orf72 whose alteration has been associated to neurodegeneration. The folliculin perturbation could affect the C9orf72 activity and our patient could represent the first human model of a relationship between FLCN and C9orf72 across the path of autophagy.
Collapse
Affiliation(s)
- Irene Bottillo
- Division of Medical Genetics, Department of Experimental Medicine, San Camillo-Forlanini Hospital, Sapienza University, Rome, Italy
| | - Luigi Laino
- Division of Medical Genetics, Department of Experimental Medicine, San Camillo-Forlanini Hospital, Sapienza University, Rome, Italy
| | - Alessia Azzarà
- Research Unit of Medical Genetics, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Carla Lintas
- Research Unit of Medical Genetics, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Ilaria Cassano
- Research Unit of Medical Genetics, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Vincenzo Di Lazzaro
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Unit of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Francesca Ursini
- Unit of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Francesco Motolese
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Unit of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Simone Bargiacchi
- Division of Medical Genetics, Department of Experimental Medicine, San Camillo-Forlanini Hospital, Sapienza University, Rome, Italy
| | - Daniela Formicola
- Division of Medical Genetics, Department of Experimental Medicine, San Camillo-Forlanini Hospital, Sapienza University, Rome, Italy
| | - Paola Grammatico
- Division of Medical Genetics, Department of Experimental Medicine, San Camillo-Forlanini Hospital, Sapienza University, Rome, Italy
| | - Fiorella Gurrieri
- Research Unit of Medical Genetics, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Operative Research Unit of Medical Genetics, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| |
Collapse
|
6
|
Boopathy LK, Roy A, Gopal T, Kandy RRK, Arumugam MK. Potential molecular mechanisms of myrtenal against colon cancer: A systematic review. J Biochem Mol Toxicol 2024; 38:e23525. [PMID: 37665681 DOI: 10.1002/jbt.23525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/12/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023]
Abstract
Colon cancer is a serious health problem across the globe with various dietary lifestyle modifications. It arises as an inflammation mediated crypts in the colon epithelial cells and undergoes uncontrolled cell division and proliferation. Bacterial enzymes contribute to a major outbreak in colon cancer development upon the release of toxic metabolites from the gut microflora. Pathogen associated molecular patterns and damage associated molecular patterns triggers the NLPR3 inflammasome pathways that releases pro-inflammatory cytokines to induce cancer of the colon. Contributing to this, specific chemokines and receptor complexes attribute to cellular proliferation and metastasis. Bacterial enzymes synergistically attack the colon mucosa and degenerate the cellular integrity causing lysosomal discharge. These factors further instigate the Tol like receptors (TLRs) and Nod like receptors (NLRs) to promote angiogenesis and supply nutrients for the cancer cells. Myrtenal, a monoterpene, is gaining more importance in recent times and it is being widely utilized against many diseases such as cancers, neurodegenerative diseases and diabetes. Based on the research data's, the reviews focus on the anticancer property of myrtenal by emphasizing its therapeutic properties which downregulate the inflammasome pathways and other signalling pathways. Combination therapy is gaining more importance as they can target every variant in the cellular stress condition. Clinical studies with compounds like myrtenal of the monoterpenes family is provided with positive results which might open an effective anticancer drug therapy. This review highlights myrtenal and its biological potency as a cost effective drug for prevention and treatment of colon cancer.
Collapse
Affiliation(s)
- Lokesh Kumar Boopathy
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Anitha Roy
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Thiyagarajan Gopal
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Rakhee Rathnam Kalari Kandy
- Department of Biochemistry and Molecular Biology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland, USA
| | - Madan Kumar Arumugam
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| |
Collapse
|
7
|
Wang M, Li J, Yang X, Yan Q, Wang H, Xu X, Lu Y, Li D, Wang Y, Sun R, Zhang S, Zhang Y, Zhang Z, Meng F, Li Y. Targeting TLK2 inhibits the progression of gastric cancer by reprogramming amino acid metabolism through the mTOR/ASNS axis. Cancer Gene Ther 2023; 30:1485-1497. [PMID: 37542132 DOI: 10.1038/s41417-023-00653-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/17/2023] [Accepted: 07/27/2023] [Indexed: 08/06/2023]
Abstract
Several recent studies have suggested that TLKs are related to tumor progression. However, the function and mechanism of action of TLK2 in gastric cancer (GC) remain elusive. In this study, TLK2 was found to be significantly upregulated in patients with GC and was identified as an independent prognostic factor for GC. Consistently, TLK2 knockdown markedly reduced the aggressiveness of GC, whereas its overexpression had the opposite effect. IP-MS revealed that the effects of TLK2 on GC were mainly associated with metabolism reprogramming. TLK2 knockdown suppressed amino acid synthesis by downregulating the mTORC1 pathway and ASNS expression in GC cells. Mechanistically, mTORC1 directly interacts with the ASNS protein and inhibits its degradation. Further experiments validated that the ASNS protein was degraded via ubiquitination instead of autophagy. Inhibiting and activating the mTORC1 pathway can upregulate and downregulate ASNS ubiquitination, respectively, and the mTORC1 pathway can reverse the regulatory effects of TLK2 on ASNS. Furthermore, TLK2 was found to regulate the mRNA expression of ASNS. TLK2 directly interacted with ATF4, a transcription factor of ASNS, and promoted its expression. The kinase inhibitor fostamatinib significantly inhibited the proliferative, invasive, and migratory capabilities of GC cells by inhibiting TLK2 activity. Altogether, this study reveals a novel functional relationship between TLK2 and the mTORC1/ASNS axis in GC. Therefore, TLK2 may serve as a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Mingliang Wang
- General Surgery Department, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, China
| | - Jing Li
- General Surgery Department, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, China
| | - Xiaodong Yang
- General Surgery Department, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, China
| | - Qiang Yan
- General Surgery Department, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, China
| | - Huizhen Wang
- General Surgery Department, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, China
| | - Xin Xu
- General Surgery Department, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, China
| | - Yida Lu
- General Surgery Department, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, China
| | - Deguan Li
- General Surgery Department, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, China
| | - Yigao Wang
- General Surgery Department, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, China
| | - Ruochuan Sun
- General Surgery Department, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, China
| | - Shangxin Zhang
- General Surgery Department, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, China
| | - Yonghong Zhang
- General Surgery Department, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, China
| | - Zhen Zhang
- General Surgery Department, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, China
| | - Futao Meng
- General Surgery Department, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, China.
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, No. 287 Changhuai Road, Bengbu, China.
| | - Yongxiang Li
- General Surgery Department, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, China.
| |
Collapse
|
8
|
Wang P, Chen W, Zhao S, Cheng F. The role of LncRNA-regulated autophagy in AKI. Biofactors 2023; 49:1010-1021. [PMID: 37458310 DOI: 10.1002/biof.1980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/16/2023] [Indexed: 10/04/2023]
Abstract
Acute kidney injury (AKI) is a complex clinical syndrome involving a series of pathophysiological processes regulated by multiple pathways at the molecular and cellular level. Long noncoding RNAs (lncRNAs) play an important role in the regulation of epigenetics, and their regulation of autophagy-related genes in AKI has attracted increasing attention. However, the role of lncRNA-regulated autophagy in AKI has not been fully elucidated. Evidence indicated that lncRNAs play regulatory roles in most factors that induce AKI. LncRNAs can regulate autophagy in AKI via a complex network of regulatory pathways to affect the development and prognosis of AKI. This article reviewed and analyzed the pathways of lncRNA regulation of autophagy in AKI in recent years. The results provide new ideas for further study of the pathophysiological process and targeted therapy for AKI.
Collapse
Affiliation(s)
- Peihan Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wu Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Sheng Zhao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
9
|
Sung Y, Yu YC, Han JM. Nutrient sensors and their crosstalk. Exp Mol Med 2023; 55:1076-1089. [PMID: 37258576 PMCID: PMC10318010 DOI: 10.1038/s12276-023-01006-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/22/2023] [Accepted: 03/13/2023] [Indexed: 06/02/2023] Open
Abstract
The macronutrients glucose, lipids, and amino acids are the major components that maintain life. The ability of cells to sense and respond to fluctuations in these nutrients is a crucial feature for survival. Nutrient-sensing pathways are thus developed to govern cellular energy and metabolic homeostasis and regulate diverse biological processes. Accordingly, perturbations in these sensing pathways are associated with a wide variety of pathologies, especially metabolic diseases. Molecular sensors are the core within these sensing pathways and have a certain degree of specificity and affinity to sense the intracellular fluctuation of each nutrient either by directly binding to that nutrient or indirectly binding to its surrogate molecules. Once the changes in nutrient levels are detected, sensors trigger signaling cascades to fine-tune cellular processes for energy and metabolic homeostasis, for example, by controlling uptake, de novo synthesis or catabolism of that nutrient. In this review, we summarize the major discoveries on nutrient-sensing pathways and explain how those sensors associated with each pathway respond to intracellular nutrient availability and how these mechanisms control metabolic processes. Later, we further discuss the crosstalk between these sensing pathways for each nutrient, which are intertwined to regulate overall intracellular nutrient/metabolic homeostasis.
Collapse
Affiliation(s)
- Yulseung Sung
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| | - Ya Chun Yu
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| | - Jung Min Han
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea.
- Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul, 03722, South Korea.
- POSTECH Biotech Center, Pohang University of Science and Technology, Pohang, 37673, South Korea.
| |
Collapse
|
10
|
Selection-free endogenous tagging of cell lines by bicistronic co-expression of the surface antigen NGFR. MethodsX 2022; 9:101929. [DOI: 10.1016/j.mex.2022.101929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022] Open
|
11
|
Schaefer L, Dikic I. Autophagy: Instructions from the extracellular matrix. Matrix Biol 2021; 100-101:1-8. [PMID: 34217800 DOI: 10.1016/j.matbio.2021.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 06/27/2021] [Accepted: 06/27/2021] [Indexed: 02/07/2023]
Abstract
In recent years, extensive research has uncovered crucial regulatory roles for the extracellular matrix (ECM) in regulating autophagy. Autophagy is a ubiquitous and highly conserved catabolic process that allows the selective removal and recycling of cytosolic components via lysosomal or vacuolar degradation. Due to its pivotal role in cellular homeostasis, the impairment of autophagy is involved in the pathophysiology of numerous diseases, comprising infectious diseases, immune and neurodegenerative disorders, renal and hepatic diseases, intervertebral and cartilage disorders, as well as fibrosis and cancer. Several ECM-derived proteoglycans and proteins, including decorin, biglycan, endorepellin, endostatin, collagen VI, and plasminogen kringle 5, have been identified as strong inducers of autophagy. In contrast, laminin α2, perlecan, and lumican exert opposite function by suppressing autophagy. Importantly, by direct interaction with various receptors, which interplay with their co-receptors and adhesion molecules, the ECM is able to direct autophagy in a molecular and cell context-specific manner. Thus, vast pharmacological potential resides in translating this knowledge into the development of ECM-derived therapeutics selectively regulating autophagy.
Collapse
Affiliation(s)
- Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany.
| | - Ivan Dikic
- Institute of Biochemistry II, School of Medicine, Goethe University, Frankfurt, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.
| |
Collapse
|