1
|
Itoh Y. Vesicle transport of matrix metalloproteinases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:361-380. [PMID: 38960480 DOI: 10.1016/bs.apcsb.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Multicellular organisms consist of cells and extracellular matrix (ECM). ECM creates a cellular microenvironment, and cells locally degrade the ECM according to their cellular activity. A major group of enzymes that modify ECM belongs to matrix metalloproteinases (MMPs) and play major roles in various pathophysiological events. ECM degradation by MMPs does not occur in all cellular surroundings but only where it is necessary, and cells achieve this by directionally secreting these proteolytic enzymes. Recent studies have indicated that such enzyme secretion is achieved by targeted vesicle transport along the microtubules, and several kinesin superfamily proteins (KIFs) have been identified as responsible motor proteins involved in the processes. This chapter discusses recent findings of the vesicle transport of MMPs and their roles.
Collapse
Affiliation(s)
- Yoshifumi Itoh
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
2
|
Hey S, Linder S. Matrix metalloproteinases at a glance. J Cell Sci 2024; 137:jcs261898. [PMID: 38236162 DOI: 10.1242/jcs.261898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent proteinases that belong to the group of endopeptidases or matrixins. They are able to cleave a plethora of substrates, including components of the extracellular matrix and cell-surface-associated proteins, as well as intracellular targets. Accordingly, MMPs play key roles in a variety of physiological and pathological processes, such as tissue homeostasis and cancer cell invasion. MMP activity is exquisitely regulated at several levels, including pro-domain removal, association with inhibitors, intracellular trafficking and transport via extracellular vesicles. Moreover, the regulation of MMP activity is currently being rediscovered for the development of respective therapies for the treatment of cancer, as well as infectious, inflammatory and neurological diseases. In this Cell Science at a Glance article and the accompanying poster, we present an overview of the current knowledge regarding the regulation of MMP activity, the intra- and extra-cellular trafficking pathways of these enzymes and their diverse groups of target proteins, as well as their impact on health and disease.
Collapse
Affiliation(s)
- Sven Hey
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Stefan Linder
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| |
Collapse
|
3
|
Zhong M, Gong L, Li N, Guan H, Gong K, Zhong Y, Zhu E, Wang X, Jiang S, Li J, Lei Y, Liu Y, Chen J, Zheng Z. Pan-cancer analysis of kinesin family members with potential implications in prognosis and immunological role in human cancer. Front Oncol 2023; 13:1179897. [PMID: 37711200 PMCID: PMC10498125 DOI: 10.3389/fonc.2023.1179897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 08/04/2023] [Indexed: 09/16/2023] Open
Abstract
Background Kinesin is a molecular motor for transporting "goods" within cells and plays a key role in many types of tumors. The multi-angle study of kinesin at the pan-cancer level is conducive to understanding its role in tumorigenesis and development and clinical treatment potential. Methods We evaluated the expression of KIF genes, performed differential analysis by using the R package limma, and explored the pan-cancer prognosis of KIF genes by univariate Cox regression analysis. To evaluate the pan-cancer role of KIF genes as a whole, we defined the KIFscore with the help of gene set variation analysis (GSVA) and explored the KIFscores across normal tissues, tumor cell lines, and 33 tumor types in TCGA. Next, we used spearman correlation analysis to extensively study the correlation between the KIFscore and tumor prognosis and be-tween the KIFscore and clinical indicators. We also identified the relationship between the KIFscore and genomic variation and immune molecular signatures by multiplatform analysis. Finally, we identified the key genes in clear cell renal cell carcinoma (ccRCC) through machine learning algorithms and verified the candidate genes by CCK8, wound healing assay, Transwell assay, and flow cytometry. Results In most cancers, KIFscores are high and they act as a risk factor for cancer. The KIFscore was significantly associated with copy number variation (CNV), tumor mutation burden (TMB), immune subtypes, DNA repair deficiency, and tumor stemness indexes. Moreover, in almost all cancer species, the KIFscore was positively correlated with T cell CD4+ TH2, the common lymphoid pro-genitor, and the T cell follicular helper. In addition, it was negatively correlated with CXCL16, CCL14, TNFSF13, and TNFRSF14 and positively correlated with ULBP1, MICB, and CD276. Machine learning helped us to identify four hub-genes in ccRCC. The suitable gene, KIF14, is highly expressed in ccRCC and promotes tumor cell proliferation, migration, and invasion. Conclusion Our study shows that the KIF genes play an important pan-cancer role and may become a potential new target for a variety of tumor treatments in the future. Furthermore, KIF14, a key molecule in the KIF genes, can provide a new idea for the ccRCC treatment.
Collapse
Affiliation(s)
- Ming Zhong
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Lian Gong
- Department of Oncology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Na Li
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Hui Guan
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Kai Gong
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Liaoning, China
| | - Yong Zhong
- Department of Clinical Medicine, Hubei Enshi College, Enshi, China
| | - Enyi Zhu
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiaohua Wang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Shan Jiang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jinhong Li
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yan Lei
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yu Liu
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jiasi Chen
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zhihua Zheng
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
4
|
Kang H, Han Y, Jin M, Zheng L, Liu Z, Xue Y, Liu Z, Li C. Decellularized squid mantle scaffolds as tissue-engineered corneal stroma for promoting corneal regeneration. Bioeng Transl Med 2023; 8:e10531. [PMID: 37476050 PMCID: PMC10354768 DOI: 10.1002/btm2.10531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 07/22/2023] Open
Abstract
Corneal blindness is a worldwide major cause of vision loss, and corneal transplantation remains to be the most effective way to restore the vision. However, often there is a shortage of the donor corneas for transplantation. Therefore, it is urgent to develop a novel tissue-engineered corneal substitute. The present study envisaged the development of a novel and efficient method to prepare the corneal stromal equivalent from the marine biomaterials-squid. A chemical method was employed to decellularize the squid mantle scaffold to create a cell-free tissue substitute using 0.5% sodium dodecyl sulfate (SDS) solution. Subsequently, a novel clearing method, namely clear, unobstructed brain imaging cocktails (CUBIC) method was used to transparent it. Decellularized squid mantle scaffold (DSMS) has high decellularization efficiency, is rich in essential amino acids, and maintains the regular fiber alignment. In vitro experiments showed that the soaking solution of DSMS was non-toxic to human corneal epithelium cells. DSMS exhibited a good biocompatibility in the rat muscle by undergoing a complete degradation, and promoted the growth of the muscle. In addition, the DSMS showed a good compatibility with the corneal stroma in the rabbit inter-corneal implantation model, and promoted the regeneration of the corneal stroma without any evident rejection. Our results indicate that the squid mantle can be a potential new type of tissue-engineered corneal stroma material with a promising clinical application.
Collapse
Affiliation(s)
- Honghua Kang
- Eye Institute & Affiliated Xiamen Eye Center, School of MedicineXiamen UniversityXiamenChina
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of MedicineXiamen UniversityXiamenChina
| | - Yi Han
- Eye Institute & Affiliated Xiamen Eye Center, School of MedicineXiamen UniversityXiamenChina
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of MedicineXiamen UniversityXiamenChina
| | - Mengyi Jin
- Eye Institute & Affiliated Xiamen Eye Center, School of MedicineXiamen UniversityXiamenChina
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of MedicineXiamen UniversityXiamenChina
| | - Lan Zheng
- Eye Institute & Affiliated Xiamen Eye Center, School of MedicineXiamen UniversityXiamenChina
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of MedicineXiamen UniversityXiamenChina
| | - Zhen Liu
- Eye Institute & Affiliated Xiamen Eye Center, School of MedicineXiamen UniversityXiamenChina
| | - Yuhua Xue
- School of Pharmaceutical SciencesXiamen UniversityXiamenChina
| | - Zuguo Liu
- Eye Institute & Affiliated Xiamen Eye Center, School of MedicineXiamen UniversityXiamenChina
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of MedicineXiamen UniversityXiamenChina
- Department of Ophthalmologythe First Affiliated Hospital of University of South ChinaHengyangHunanChina
| | - Cheng Li
- Eye Institute & Affiliated Xiamen Eye Center, School of MedicineXiamen UniversityXiamenChina
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of MedicineXiamen UniversityXiamenChina
- Department of Ophthalmologythe First Affiliated Hospital of University of South ChinaHengyangHunanChina
| |
Collapse
|
5
|
Fibronectin 1 derived from tumor-associated macrophages and fibroblasts promotes metastasis through the JUN pathway in hepatocellular carcinoma. Int Immunopharmacol 2022; 113:109420. [PMID: 36461607 DOI: 10.1016/j.intimp.2022.109420] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/14/2022] [Accepted: 10/31/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Intercellular communication in the tumor microenvironment is a potential regulator of metastasis. To explore the specific mechanism, we performed a multi-omics analysis of hepatocellular carcinoma. MATERIALS AND METHODS Multiple omics data including scRNA-seq, ATAC-seq, RNA-seq, and methylation data were obtained from GEO and TCGA databases. SCENIC was used to identify key transcription factors and their Regulatory networks. ScMLnet was used to explore the mechanism of intercellular communication in the microenvironment. Multiple omics studies based on RNA-seq, ATAC-seq, and methylation data were used to explore downstream mechanisms of key transcription factors. Based on the analysis of cell differentiation trajectory and transcription subtypes, the regulation of cell communication on tumor subtypes was studied, and possible therapeutic compounds were explored. The universality of this mechanism was investigated by post-Pan-cancer analysis. RESULTS JUN and its regulatory network play a key role in HCC, which was mainly positively correlated with tumor-associated macrophages and fibroblasts. Intercellular communication analysis showed that macrophage and fibroblast-derived FN1 could increase JUN by TNFRSF11B/SMAD3. Multiomics analysis showed that KIF13A was a key downstream gene of JUN, which was involved in the activation of the hippo pathway. Analysis of cell differentiation trajectory, transcriptome subtypes, and neural network modeling showed that intercellular communication in the microenvironment can regulate the transcriptome characterization of HCC. Pan-cancer analysis indicates that this mechanism may be universal. CONCLUSION FN1 derived from tumor-associated macrophages and fibroblasts promotes metastasis and alters transcriptome subtypes through the JUN-Hippo signaling pathway in HCC, which may be universal in cancers.
Collapse
|
6
|
Itoh Y. Proteolytic modulation of tumor microenvironment signals during cancer progression. Front Oncol 2022; 12:935231. [PMID: 36132127 PMCID: PMC9483212 DOI: 10.3389/fonc.2022.935231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Under normal conditions, the cellular microenvironment is optimized for the proper functioning of the tissues and organs. Cells recognize and communicate with the surrounding cells and extracellular matrix to maintain homeostasis. When cancer arises, the cellular microenvironment is modified to optimize its malignant growth, evading the host immune system and finding ways to invade and metastasize to other organs. One means is a proteolytic modification of the microenvironment and the signaling molecules. It is now well accepted that cancer progression relies on not only the performance of cancer cells but also the surrounding microenvironment. This mini-review discusses the current understanding of the proteolytic modification of the microenvironment signals during cancer progression.
Collapse
|