1
|
Berthelot R, Variola F. Investigating the interplay between environmental conditioning and nanotopographical cueing on the response of human MG63 osteoblastic cells to titanium nanotubes. Biomater Sci 2024. [PMID: 39404078 DOI: 10.1039/d4bm00792a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Titanium nanotubular surfaces have been extensively studied for their potential use in biomedical implants due to their ability to promote relevant phenomena associated with osseointegration, among other functions. However, despite the large body of literature on the subject, potential synergistic/antagonistic effects resulting from the combined influence of environmental variables and nanotopographical cues remain poorly investigated. Specifically, it is still unclear whether the nanotube-induced variations in cellular activity are preserved across different biochemical contexts. To bridge this gap, this study systematically evaluates the combined influence of nanotopographical cues and environmental factors on human MG63 osteoblastic cells. To this end, we capitalized on a triphasic anodization protocol to create nanostructured surfaces characterized by an average nanotube inner diameter of 25 nm (NT1) and 82 nm (NT2), as well as a two-tiered honeycomb (HC) architecture. A variable glucose content was chosen as the environmental modifier due to its well-known ability to affect specific functions of MG63 cells. Alkaline phosphatase (ALP), viability/metabolic activity and proliferation were quantified to identify the suitable preconditioning window required for dictating a change in behaviour without significantly damaging cells. Successively, a combination of immunofluorescence, colorimetric assays, live cell imaging and western blots quantified viability/metabolic activity and cell proliferation, migration and differentiation as a function of the combined effects exerted by the nanostructured substrates and the glucose content. To achieve a thorough understanding of MG63 cell adaptation and response, a comparative analysis table that includes and systematically cross-analyzes all variables from this study was used for interpretation and discussion of the results. Taken together, we have demonstrated that all surfaces mitigate the negative effects of high glucose. However, nanotubular topographies, particularly NT2, elicit a more beneficial outcome in high glucose in respect to untreated titanium. In addition, while NT1 surfaces are associated with the most stable cellular response across varying glucose levels, the NT2 and HC substrates exhibit the strongest enhancement of cell migration, viability/metabolism and differentiation. Moreover, shorter-term processes such as adhesion and proliferation are favored on untreated titanium, while anodized samples support later-term events. Lastly, the role of anodized surfaces is dominant over the effects of environmental glucose, underscoring the importance of carefully considering nanoscale surface features in the design and development of cell-instructive titanium surfaces.
Collapse
Affiliation(s)
- Ryan Berthelot
- Faculty of Engineering, Department of Mechanical Engineering, University of Ottawa, Canada.
- Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada
| | - Fabio Variola
- Faculty of Engineering, Department of Mechanical Engineering, University of Ottawa, Canada.
- Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Canada
- Children's Hospital of Eastern Ontario (CHEO), Ottawa, Canada
| |
Collapse
|
2
|
Abaszadeh F, Ashoub MH, Khajouie G, Amiri M. Nanotechnology development in surgical applications: recent trends and developments. Eur J Med Res 2023; 28:537. [PMID: 38001554 PMCID: PMC10668503 DOI: 10.1186/s40001-023-01429-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 10/03/2023] [Indexed: 11/26/2023] Open
Abstract
This paper gives a detailed analysis of nanotechnology's rising involvement in numerous surgical fields. We investigate the use of nanotechnology in orthopedic surgery, neurosurgery, plastic surgery, surgical oncology, heart surgery, vascular surgery, ophthalmic surgery, thoracic surgery, and minimally invasive surgery. The paper details how nanotechnology helps with arthroplasty, chondrogenesis, tissue regeneration, wound healing, and more. It also discusses the employment of nanomaterials in implant surfaces, bone grafting, and breast implants, among other things. The article also explores various nanotechnology uses, including stem cell-incorporated nano scaffolds, nano-surgery, hemostasis, nerve healing, nanorobots, and diagnostic applications. The ethical and safety implications of using nanotechnology in surgery are also addressed. The future possibilities of nanotechnology are investigated, pointing to a possible route for improved patient outcomes. The essay finishes with a comment on nanotechnology's transformational influence in surgical applications and its promise for future breakthroughs.
Collapse
Affiliation(s)
- Farzad Abaszadeh
- Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | - Muhammad Hossein Ashoub
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ghazal Khajouie
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | - Mahnaz Amiri
- Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran.
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran.
| |
Collapse
|
3
|
Ozan S, Bilgin A, Kasman Ş. Laser textured Ti-6Al-7Nb alloy for biomedical applications: An investigation of texturing parameters on surface properties. Proc Inst Mech Eng H 2023; 237:1139-1153. [PMID: 37776151 DOI: 10.1177/09544119231200537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Surface texturing with a laser beam is an effective method for engraving on the surface of biomaterials. The four laser texturing parameters (scan speed, frequency, fill spacing, and pulse width) having five different values were associated with five different scanning strategies (scan direction), and a total of 25 texturing conditions were tested on the Ti-6Al-7Nb alloy surface. The surface roughness and wettability of the textures created with a 20 W nanosecond fiber laser with a wavelength of 1064 nm on the surface of Ti-6Al-7Nb biocompatible alloy were investigated. Laser texturing parameters were analyzed according to the lowest surface roughness and a hydrophilic surface by creating L25 orthogonal arrays. The surface roughness values ranged between 2 and 26 µm. The lowest surface roughness with a value of 2.21 µm was achieved when the texture was processed with a frequency of 150 kHz, a fill spacing of 0.02 mm, a scan speed of 800 mm/s, a pulse width of 250 ns, and a cross-hatch strategy of 0°/90°. Considering the wettability test results, it was revealed that most of the textured surfaces have super hydrophilic and hydrophilic characteristics except the surface with a contact angle of 92.93°. The relevant surface was textured with 75 kHz frequency, 1000 mm/s scan speed, 0.05 mm fill spacing, 200 ns pulse width, and 45°/-45° cross-hatch strategy.
Collapse
Affiliation(s)
- Sertan Ozan
- Department of Mechanical Engineering, Yozgat Bozok University, Yozgat, Turkey
| | - Abdurrahman Bilgin
- Department of Mechanical Engineering, Yozgat Bozok University, Yozgat, Turkey
| | - Şefika Kasman
- Department of Mechanical Engineering, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
4
|
Gao X, Zhao Y, Wang M, Liu C, Luo J. Theoretical modeling approach for adsorption of fibronectin on the nanotopographical implants. Proc Inst Mech Eng H 2023; 237:1102-1115. [PMID: 37606321 DOI: 10.1177/09544119231188297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
The success of orthopedic implants depends on the sufficient integration between tissue and implant, which is influenced by the cellular responses to their microenvironment. The conformation of adsorbed extracellular matrix is crucial for cellular behavior instruction via manipulating the physiochemical features of materials. To investigate the electrostatic adsorption mechanism of fibronectin on nanotopographies, a theoretical model was established to determine surface charge density and Coulomb's force of nanotopography - fibronectin interactions using a Laplace equation satisfying the boundary conditions. Surface charge density distribution of nanotopographies with multiple random fibronectin was simulated based on random number and Monte Carlo hypothesis. The surface charge density on the nanotopographies was compared to the experimental measurements, to verify the effectiveness of the theoretical model. The model was implemented to calculate the Coulomb force generated by nanotopographies to compare the fibronectin adsorption. This model has revealed the multiple random quantitative fibronectin electrostatic adsorption to the nanotopographies, which is beneficial for orthopedic implant surface design.Significance: The conformation and distribution of adsorbed extracellular matrix on biomedical implants are crucial for directing cellular behaviors. However, the Ti nanotopography-ECM interaction mechanism remains largely unknown. This is mostly because of the interactions that are driven by electrostatic force, and any experimental probe could interfere with the electric field between the charged protein and Ti surface. A theoretical model is hereby proposed to simulate the adsorption between nanotopographies and fibronectin. Random number and Monte Carlo hypothesis were applied for multiple random fibronectin simulation, and the Coulomb's force between nanoconvex and nanoconcave structures was comparatively analyzed.
Collapse
Affiliation(s)
- Xiangsheng Gao
- Beijing Key Laboratory of Advanced Manufacturing Technology, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, China
| | - Yuhang Zhao
- Beijing Key Laboratory of Advanced Manufacturing Technology, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, China
| | - Min Wang
- Beijing Key Laboratory of Advanced Manufacturing Technology, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, China
| | - Chaozong Liu
- Institute of Orthopaedic & Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, London, UK
| | - Jiajun Luo
- Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, UK
| |
Collapse
|
5
|
Manzur J, Akhtar M, Aizaz A, Ahmad K, Yasir M, Minhas BZ, Avcu E, Ur Rehman MA. Electrophoretic Deposition, Microstructure, and Selected Properties of Poly(lactic- co-glycolic) Acid-Based Antibacterial Coatings on Mg Substrate. ACS OMEGA 2023; 8:18074-18089. [PMID: 37251160 PMCID: PMC10210021 DOI: 10.1021/acsomega.3c01384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023]
Abstract
There is an urgent need to develop biodegradable implants that can degrade once they have fulfilled their function. Commercially pure magnesium (Mg) and its alloys have the potential to surpass traditional orthopedic implants due to their good biocompatibility and mechanical properties, and most critically, biodegradability. The present work focuses on the synthesis and characterization (microstructural, antibacterial, surface, and biological properties) of poly(lactic-co-glycolic) acid (PLGA)/henna (Lawsonia inermis)/Cu-doped mesoporous bioactive glass nanoparticles (Cu-MBGNs) composite coatings deposited via electrophoretic deposition (EPD) on Mg substrates. PLGA/henna/Cu-MBGNs composite coatings were robustly deposited on Mg substrates using EPD, and their adhesive strength, bioactivity, antibacterial activity, corrosion resistance, and biodegradability were thoroughly investigated. Scanning electron microscopy and Fourier transform infrared spectroscopy studies confirmed the uniformity of the coatings' morphology and the presence of functional groups that were attributable to PLGA, henna, and Cu-MBGNs, respectively. The composites exhibited good hydrophilicity with an average roughness of 2.6 μm, indicating desirable properties for bone forming cell attachment, proliferation, and growth. Crosshatch and bend tests confirmed that the adhesion of the coatings to Mg substrates and their deformability were adequate. Electrochemical Tafel polarization tests revealed that the composite coating adjusted the degradation rate of Mg substrate in a human physiological environment. Incorporating henna into PLGA/Cu-MBGNs composite coatings resulted in antibacterial activity against Escherichia coli and Staphylococcus aureus. The coatings stimulated the proliferation and growth of osteosarcoma MG-63 cells during the initial incubation period of 48 h (determined by the WST-8 assay).
Collapse
Affiliation(s)
- Jawad Manzur
- Department
of Materials Science & Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad 44000, Pakistan
| | - Memoona Akhtar
- Department
of Materials Science & Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad 44000, Pakistan
| | - Aqsa Aizaz
- Department
of Materials Science & Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad 44000, Pakistan
| | - Khalil Ahmad
- Department
of Materials Science & Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad 44000, Pakistan
| | - Muhammad Yasir
- Department
of Materials Science & Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad 44000, Pakistan
| | - Badar Zaman Minhas
- Department
of Materials Science & Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad 44000, Pakistan
| | - Egemen Avcu
- Department
of Mechanical Engineering, Kocaeli University, Kocaeli 41001, Turkey
- Ford
Otosan Ihsaniye Automotive Vocational School, Kocaeli University, Kocaeli 41650, Turkey
| | - Muhammad Atiq Ur Rehman
- Department
of Materials Science & Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad 44000, Pakistan
| |
Collapse
|
6
|
Dos Santos LMS, de Oliveira JM, da Silva ECO, Fonseca VML, Silva JP, Barreto E, Dantas NO, Silva ACA, Jesus-Silva AJ, Mendonça CR, Fonseca EJS. Mechanical and morphological responses of osteoblast-like cells to two-photon polymerized microgrooved surfaces. J Biomed Mater Res A 2023; 111:234-244. [PMID: 36239143 DOI: 10.1002/jbm.a.37454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/18/2022] [Accepted: 09/27/2022] [Indexed: 01/10/2023]
Abstract
Microgrooved surfaces are recognized as an important strategy of tissue engineering to promote the alignment of bone cells. In this work, we have investigated the mechanical and morphological aspects of osteoblasts cells after interaction with different micro-structured polymeric surfaces. Femtosecond laser writing technique was used for the construction of circular and parallel microgrooved patterns in biocompatible polymeric surfaces based on pentaerythritol triacrylate. Additionally, we have studied the influence of the biocompatible TiO2 nanocrystals (NCs) related to the cell behavior, when incorporated to the photoresin. The atomic force microscopy technique was used to investigate the biomechanical reaction of the human osteoblast-like MG-63 cells for the different microgroove. It was demonstrated that osteoblasts grown on circular microgrooved surfaces exhibited significantly larger Young's modulus compared to cells sown on flat films. Furthermore, we could observe that TiO2 NCs improved the circular microgrooves effects, resulting in more populated sites, 34% more elongated cells, and increasing the cell stiffness by almost 160%. These results can guide the design and construction of effective scaffold surfaces with circular microgrooves for tissue engineering and bone regeneration.
Collapse
Affiliation(s)
- Laura M S Dos Santos
- Optics and Nanoscopy Group, Institute of Physics, Federal University of Alagoas (UFAL), Maceió, Brazil
| | | | - Elaine C O da Silva
- Optics and Nanoscopy Group, Institute of Physics, Federal University of Alagoas (UFAL), Maceió, Brazil
| | - Vitor M L Fonseca
- Laboratory of Cell Biology, Institute of Biological Sciences and Health, Federal University of Alagoas (ICBS/UFAL), Maceió, Brazil
| | - Juliane P Silva
- Laboratory of Cell Biology, Institute of Biological Sciences and Health, Federal University of Alagoas (ICBS/UFAL), Maceió, Brazil
| | - Emiliano Barreto
- Laboratory of Cell Biology, Institute of Biological Sciences and Health, Federal University of Alagoas (ICBS/UFAL), Maceió, Brazil
| | | | - Anielle C A Silva
- Institute of Physics, Federal University of Alagoas (UFAL), Maceió, Brazil
| | - Alcenísio J Jesus-Silva
- Optics and Nanoscopy Group, Institute of Physics, Federal University of Alagoas (UFAL), Maceió, Brazil
| | - Cléber R Mendonça
- Institute of Physics of São Carlos, University of São Paulo, São Carlos, Brazil
| | - Eduardo J S Fonseca
- Optics and Nanoscopy Group, Institute of Physics, Federal University of Alagoas (UFAL), Maceió, Brazil
| |
Collapse
|
7
|
Erdogan Y, Ercan B. Anodized Nanostructured 316L Stainless Steel Enhances Osteoblast Functions and Exhibits Anti-Fouling Properties. ACS Biomater Sci Eng 2023; 9:693-704. [PMID: 36692948 PMCID: PMC9930089 DOI: 10.1021/acsbiomaterials.2c01072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Poor osseointegration and infection are among the major challenges of 316L stainless steel (SS) implants in orthopedic applications. Surface modifications to obtain a nanostructured topography seem to be a promising method to enhance cellular interactions of 316L SS implants. In this study, arrays of nanodimples (NDs) having controlled feature sizes between 25 and 250 nm were obtained on 316L SS surfaces by anodic oxidation (anodization). Results demonstrated that the fabrication of NDs increased the surface area and, at the same time, altered the surface chemistry of 316L SS to provide chromium oxide- and hydroxide-rich surface oxide layers. In vitro experiments showed that ND surfaces promoted up to a 68% higher osteoblast viability on the fifth day of culture. Immunofluorescence images confirmed a well-spread cytoskeleton organization on the ND surfaces. In addition, higher alkaline phosphate activity and calcium mineral synthesis were observed on the ND surfaces compared to non-anodized 316L SS. Furthermore, a 71% reduction in Staphylococcus aureus (S. aureus) and a 58% reduction in Pseudomonas aeruginosa (P. aeruginosa) colonies were observed on the ND surfaces having a 200 nm feature size compared to non-anodized surfaces at 24 h of culture. Cumulatively, the results showed that a ND surface topography fabricated on 316L SS via anodization upregulated the osteoblast viability and functions while preventing S. aureus and P. aeruginosa biofilm synthesis.
Collapse
Affiliation(s)
- Yasar
Kemal Erdogan
- Biomedical
Engineering Program, Middle East Technical
University, Ankara 06800, Turkey,Department
of Biomedical Engineering, Isparta University
of Applied Science, Isparta 32260, Turkey
| | - Batur Ercan
- Biomedical
Engineering Program, Middle East Technical
University, Ankara 06800, Turkey,Department
of Metallurgical and Materials Engineering, Middle East Technical University, Ankara 06800, Turkey,BIOMATEN,
METU Center of Excellence in Biomaterials and Tissue Engineering, Ankara 06800, Turkey,. Phone: +90 (312) 210-2513
| |
Collapse
|
8
|
Carette X, Mincheva R, Gonon MF, Raquez J. A simple approach for a
PEG‐
b
‐PLA
‐compatibilized interface in
PLA
/
HAp
nanocomposite. From the design of the material to the improvement of thermal/mechanical properties and bioactivity. J Appl Polym Sci 2022. [DOI: 10.1002/app.52807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xavier Carette
- Laboratory of Polymeric and Composite Materials, Center of Innovation and Research in Materials and Polymers University of Mons Mons Belgium
| | - Rosica Mincheva
- Laboratory of Polymeric and Composite Materials, Center of Innovation and Research in Materials and Polymers University of Mons Mons Belgium
| | | | - Jean‐Marie Raquez
- Laboratory of Polymeric and Composite Materials, Center of Innovation and Research in Materials and Polymers University of Mons Mons Belgium
| |
Collapse
|
9
|
Florea DA, Grumezescu V, Bîrcă AC, Vasile BȘ, Mușat M, Chircov C, Stan MS, Grumezescu AM, Andronescu E, Chifiriuc MC. Design, Characterization, and Antibacterial Performance of MAPLE-Deposited Coatings of Magnesium Phosphate-Containing Silver Nanoparticles in Biocompatible Concentrations. Int J Mol Sci 2022; 23:ijms23147910. [PMID: 35887261 PMCID: PMC9321465 DOI: 10.3390/ijms23147910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 01/21/2023] Open
Abstract
Bone disorders and traumas represent a common type of healthcare emergency affecting men and women worldwide. Since most of these diseases imply surgery, frequently complicated by exogenous or endogenous infections, there is an acute need for improving their therapeutic approaches, particularly in clinical conditions requiring orthopedic implants. Various biomaterials have been investigated in the last decades for their potential to increase bone regeneration and prevent orthopedic infections. The present study aimed to develop a series of MAPLE-deposited coatings composed of magnesium phosphate (Mg3(PO4)2) and silver nanoparticles (AgNPs) designed to ensure osteoblast proliferation and anti-infective properties simultaneously. Mg3(PO4)2 and AgNPs were obtained through the cooling bath reaction and chemical reduction, respectively, and then characterized through X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), and Selected Area Electron Diffraction (SAED). Subsequently, the obtained coatings were evaluated by Infrared Microscopy (IRM), Fourier-Transform Infrared Spectroscopy (FT-IR), and Scanning Electron Microscopy (SEM). Their biological properties show that the proposed composite coatings exhibit well-balanced biocompatibility and antibacterial activity, promoting osteoblasts viability and proliferation and inhibiting the adherence and growth of Staphylococcus aureus and Pseudomonas aeruginosa, two of the most important agents of orthopedic implant-associated infections.
Collapse
Affiliation(s)
- Denisa Alexandra Florea
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania; (D.A.F.); (A.C.B.); (B.Ș.V.); (M.M.); (C.C.); (A.M.G.)
| | - Valentina Grumezescu
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania;
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania; (D.A.F.); (A.C.B.); (B.Ș.V.); (M.M.); (C.C.); (A.M.G.)
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania; (D.A.F.); (A.C.B.); (B.Ș.V.); (M.M.); (C.C.); (A.M.G.)
| | - Mihaela Mușat
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania; (D.A.F.); (A.C.B.); (B.Ș.V.); (M.M.); (C.C.); (A.M.G.)
| | - Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania; (D.A.F.); (A.C.B.); (B.Ș.V.); (M.M.); (C.C.); (A.M.G.)
| | - Miruna S. Stan
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050657 Bucharest, Romania;
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania; (D.A.F.); (A.C.B.); (B.Ș.V.); (M.M.); (C.C.); (A.M.G.)
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050657 Bucharest, Romania;
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania;
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania; (D.A.F.); (A.C.B.); (B.Ș.V.); (M.M.); (C.C.); (A.M.G.)
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania;
- Correspondence:
| | - Mariana Carmen Chifiriuc
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania;
- Department of Microbiology, Faculty of Biology, University of Bucharest, Aleea Portocalelor Str. 1-3, District 5, 060101 Bucharest, Romania
- The Romanian Academy, Calea Victoriei 25, District 1, 010071 Bucharest, Romania
| |
Collapse
|
10
|
Batool SA, Ahmad K, Irfan M, Ur Rehman MA. Zn-Mn-Doped Mesoporous Bioactive Glass Nanoparticle-Loaded Zein Coatings for Bioactive and Antibacterial Orthopedic Implants. J Funct Biomater 2022; 13:jfb13030097. [PMID: 35893465 PMCID: PMC9326724 DOI: 10.3390/jfb13030097] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 12/16/2022] Open
Abstract
In recent years, natural polymers have replaced synthetic polymers for antibacterial orthopedic applications owing to their excellent biocompatibility and biodegradability. Zein is a biopolymer found in corn. The lacking mechanical stability of zein is overcome by incorporating bioceramics, e.g., mesoporous bioactive glass nanoparticles (MBGNs). In the present study, pure zein and zein/Zn–Mn MBGN composite coatings were deposited via electrophoretic deposition (EPD) on 316L stainless steel (SS). Zn and Mn were co-doped in MBGNs in order to make use of their antibacterial and osteogenic potential, respectively. A Taguchi design of experiment (DoE) study was established to evaluate the effect of various working parameters on the morphology of the coatings. It was observed that coatings deposited at 20 V for 5 min with 4 g/L concentration (conc.) of Zn–Mn MBGNs showed the highest deposition yield. Uniform coatings with highly dispersed MBGNs were obtained adopting these optimized parameters. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) were employed to investigate the morphology and elemental composition of zein/Zn–Mn MBGN composite coatings. Surface properties, i.e., coating roughness and wettability analysis, concluded that composite coatings were appropriate for cell attachment and proliferation. For adhesion strength, various techniques, including a tape test, bend test, pencil hardness test, and tensile test, were performed. Wear and corrosion analysis highlighted the mechanical and chemical stability of the coatings. The colony forming unit (CFU) test showed that the zein/Zn–Mn MBGN composite coating was highly effective against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) due to the presence of Zn. The formation of a hydroxyapatite (HA)-like structure upon immersion in the simulated body fluid (SBF) validated the in vitro bioactivity of the coating. Moreover, a WST-8 assay depicted that the MG-63 cells proliferate on the composite coating. It was concluded that the zein/Zn–Mn MBGN coating synthesized in this work can be used for bioactive and antibacterial orthopedic applications.
Collapse
Affiliation(s)
- Syeda Ammara Batool
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, Islamabad 44000, Pakistan; (S.A.B.); (K.A.)
| | - Khalil Ahmad
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, Islamabad 44000, Pakistan; (S.A.B.); (K.A.)
| | - Muhammad Irfan
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST) H-12, Islamabad 44000, Pakistan;
| | - Muhammad Atiq Ur Rehman
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, Islamabad 44000, Pakistan; (S.A.B.); (K.A.)
- Correspondence:
| |
Collapse
|
11
|
Abdullah T, Qurban RO, Abdel-Wahab MS, Salah NA, Melaibari AA, Zamzami MA, Memić A. Development of Nanocoated Filaments for 3D Fused Deposition Modeling of Antibacterial and Antioxidant Materials. Polymers (Basel) 2022; 14:2645. [PMID: 35808690 PMCID: PMC9269528 DOI: 10.3390/polym14132645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 12/12/2022] Open
Abstract
Three-dimensional (3D) printing is one of the most futuristic manufacturing technologies, allowing on-demand manufacturing of products with highly complex geometries and tunable material properties. Among the different 3D-printing technologies, fused deposition modeling (FDM) is the most popular one due to its affordability, adaptability, and pertinency in many areas, including the biomedical field. Yet, only limited amounts of materials are commercially available for FDM, which hampers their application potential. Polybutylene succinate (PBS) is one of the biocompatible and biodegradable thermoplastics that could be subjected to FDM printing for healthcare applications. However, microbial contamination and the formation of biofilms is a critical issue during direct usage of thermoplastics, including PBS. Herein, we developed a composite filament containing polybutylene succinate (PBS) and lignin for FDM printing. Compared to pure PBS, the PBS/lignin composite with 2.5~3.5% lignin showed better printability and antioxidant and antimicrobial properties. We further coated silver/zinc oxide on the printed graft to enhance their antimicrobial performance and obtain the strain-specific antimicrobial activity. We expect that the developed approach can be used in biomedical applications such as patient-specific orthoses.
Collapse
Affiliation(s)
- Turdimuhammad Abdullah
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.A.); (M.S.A.-W.); (N.A.S.); (A.A.M.)
| | - Rayyan O. Qurban
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.O.Q.); (M.A.Z.)
| | - Mohamed Sh. Abdel-Wahab
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.A.); (M.S.A.-W.); (N.A.S.); (A.A.M.)
| | - Numan A. Salah
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.A.); (M.S.A.-W.); (N.A.S.); (A.A.M.)
| | - Ammar AbdulGhani Melaibari
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.A.); (M.S.A.-W.); (N.A.S.); (A.A.M.)
- Department of Mechanical Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mazin A. Zamzami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.O.Q.); (M.A.Z.)
| | - Adnan Memić
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.A.); (M.S.A.-W.); (N.A.S.); (A.A.M.)
| |
Collapse
|
12
|
Oirschot BV, zhang Y, Alghamdi HS, cordeiro JM, nagay B, barão VA, de avila ED, van den Beucken J. Surface engineering for dental implantology: favoring tissue responses along the implant
. Tissue Eng Part A 2022; 28:555-572. [DOI: 10.1089/ten.tea.2021.0230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Bart van Oirschot
- Radboudumc Department of Dentistry, 370502, Regenerative Biomaterials, Nijmegen, Gelderland, Netherlands,
| | - yang zhang
- Shenzhen University, 47890, School of Stomatology, Health Science Center, Shenzhen, Guangdong, China,
| | - Hamdan S Alghamdi
- King Saud University College of Dentistry, 204573, Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia,
| | - jairo m cordeiro
- UNICAMP, 28132, Department of Prosthodontics and Periodontology, Piracicaba Dental School, Campinas, SP, Brazil,
| | - bruna nagay
- UNICAMP, 28132, Department of Prosthodontics and Periodontology, Piracicaba Dental School, Campinas, SP, Brazil,
| | - valentim ar barão
- UNICAMP, 28132, Department of Prosthodontics and Periodontology, Piracicaba Dental School, Campinas, SP, Brazil,
| | - erica dorigatti de avila
- UNESP, 28108, Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, São Paulo State University (UNESP), Sao Paulo, SP, Brazil,
| | - Jeroen van den Beucken
- Radboudumc Department of Dentistry, 370502, Regenerative Biomaterials, Nijmegen, Gelderland, Netherlands,
- RU RIMLS, 59912, Nijmegen, Gelderland, Netherlands,
| |
Collapse
|
13
|
Zhao H, Bai N, Zhang Q, Wang Y, Jiang W, Yang J. Preparation of mussel-inspired silver/polydopamine antibacterial biofilms on Ti-6Al-4V for dental applications. RSC Adv 2022; 12:6641-6648. [PMID: 35424626 PMCID: PMC8982268 DOI: 10.1039/d1ra06634j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/22/2022] [Indexed: 11/21/2022] Open
Abstract
The properties of osseointegration and antibacterial ability is vital import for dental materials. Herein, we designed the multilayer TC4-Ag-polydopamine coatings, to provide TC4 with slow-release antibacterial properties whilst maintaining cytocompatibility. In brief, thickness of Ag inner layer can be easily controlled by magnetron sputtering technology. The resulting top polydopamine layer protected the Ag well from corrosion and gave a sustained release of Ag+ up to one month. In addition, the prepared TC4-Ag-polydopamine samples with Ag thickness of 20 and 30 nm, showed high hydrophilic performance with the contact-angle less than 20°, low cytotoxicity and good cytocompatibility. Expectedly, it could become a prospective candidate for future slow-release antibacterial dental materials.
Collapse
Affiliation(s)
- Hongmei Zhao
- The Affiliated Hospital of Qingdao University Qingdao 266003 China
- School of Stomatology of Qingdao University Qingdao 266003 China
| | - Na Bai
- The Affiliated Hospital of Qingdao University Qingdao 266003 China
- School of Stomatology of Qingdao University Qingdao 266003 China
| | - Qian Zhang
- The Affiliated Hospital of Qingdao University Qingdao 266003 China
- School of Stomatology of Qingdao University Qingdao 266003 China
| | - Ying Wang
- The Affiliated Hospital of Qingdao University Qingdao 266003 China
- School of Stomatology of Qingdao University Qingdao 266003 China
| | - Wenjing Jiang
- The Affiliated Hospital of Qingdao University Qingdao 266003 China
- School of Stomatology of Qingdao University Qingdao 266003 China
| | - Jianjun Yang
- The Affiliated Hospital of Qingdao University Qingdao 266003 China
- School of Stomatology of Qingdao University Qingdao 266003 China
| |
Collapse
|
14
|
Barão VAR, Costa RC, Shibli JA, Bertolini M, Souza JGS. Emerging titanium surface modifications: The war against polymicrobial infections on dental implants. Braz Dent J 2022; 33:1-12. [DOI: 10.1590/0103-6440202204860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 12/18/2022] Open
Abstract
Abstract Dental implants made of titanium (Ti) material is recognized as the leading treatment option for edentulous patients’ rehabilitation, showing a high success rate and clinical longevity. However, dental implant surface acts as a platform for microbial adhesion and accumulation once exposed to the oral cavity. Biofilm formation on implant surfaces has been considered the main etiologic factor to induce inflammatory diseases, known as peri-implant mucositis and peri-implantitis; the latter being recognized as the key reason for late dental implant failure. Different factors, such as biofilm matrix production, source of carbohydrate exposure, and cross-kingdom interactions, have encouraged increased microbial accumulation on dental implants, leading to a microbiological community shift from a healthy to a pathogenic state, increasing inflammation and favoring tissue damage. These factors combined with the spatial organization of biofilms, reduced antimicrobial susceptibility, complex microbiological composition, and the irregular topography of implants hamper biofilm control and microbial killing. In spite of the well-known etiology, there is still no consensus regarding the best clinical protocol to control microbial accumulation on dental implant surfaces and treat peri-implant disease. In this sense, different coatings and Ti surface treatments have been proposed in order to reduce microbial loads and control polymicrobial infections on implantable devices. Therefore, this critical review aims to discuss the current evidence on biofilm accumulation on dental implants and central factors related to the pathogenesis process of implant-related infections. Moreover, the potential surface modifications with anti-biofilm properties for dental implant devices is discussed to shed light on further promising strategies to control peri-implantitis.
Collapse
|
15
|
Cordeiro JM, Nagay BE, Dini C, Souza JG, Rangel EC, da Cruz NC, Yang F, van den Beucken JJ, Barão VA. Copper source determines chemistry and topography of implant coatings to optimally couple cellular responses and antibacterial activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 134:112550. [DOI: 10.1016/j.msec.2021.112550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/16/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022]
|
16
|
Girón J, Kerstner E, Medeiros T, Oliveira L, Machado GM, Malfatti CF, Pranke P. Biomaterials for bone regeneration: an orthopedic and dentistry overview. Braz J Med Biol Res 2021; 54:e11055. [PMID: 34133539 PMCID: PMC8208772 DOI: 10.1590/1414-431x2021e11055] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
Because bone-associated diseases are increasing, a variety of tissue engineering approaches with bone regeneration purposes have been proposed over the last years. Bone tissue provides a number of important physiological and structural functions in the human body, being essential for hematopoietic maintenance and for providing support and protection of vital organs. Therefore, efforts to develop the ideal scaffold which is able to guide the bone regeneration processes is a relevant target for tissue engineering researchers. Several techniques have been used for scaffolding approaches, such as diverse types of biomaterials. On the other hand, metallic biomaterials are widely used as support devices in dentistry and orthopedics, constituting an important complement for the scaffolds. Hence, the aim of this review is to provide an overview of the degradable biomaterials and metal biomaterials proposed for bone regeneration in the orthopedic and dentistry fields in the last years.
Collapse
Affiliation(s)
- J Girón
- Laboratório de Hematologia e Células Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.,Programa de Pós-graduação em Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - E Kerstner
- Programa de Pós-graduação em Engenharia de Minas, Metalúrgica e de Materiais, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - T Medeiros
- Laboratório de Hematologia e Células Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.,Programa de Pós-graduação em Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - L Oliveira
- Laboratório de Hematologia e Células Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - G M Machado
- Programa de Gradução em Odontologia, Universidade Luterana do Brasil, Canoas, RS, Brasil
| | - C F Malfatti
- Programa de Pós-graduação em Engenharia de Minas, Metalúrgica e de Materiais, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - P Pranke
- Laboratório de Hematologia e Células Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.,Programa de Pós-graduação em Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.,Instituto de Pesquisa com Células Tronco, Porto Alegre, RS, Brasil
| |
Collapse
|
17
|
Nobles KP, Janorkar AV, Williamson RS. Surface modifications to enhance osseointegration-Resulting material properties and biological responses. J Biomed Mater Res B Appl Biomater 2021; 109:1909-1923. [PMID: 33871951 DOI: 10.1002/jbm.b.34835] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/26/2021] [Accepted: 03/14/2021] [Indexed: 12/18/2022]
Abstract
As life expectancy and the age of the general population increases so does the need for improved implants. A major contributor to the failure of implants is poor osseointegration, which is typically described as the direct connection between bone and implant. This leads to unnecessary complications and an increased burden on the patient population. Modification of the implant surfaces through novel techniques, such as varying topography and/or applying coatings, has become a popular method to enhance the osseointegration capability of implants. Recent research has shown that particular surface features influence how bone cells interact with a material; however, it is unknown which exact features achieve optimal bone integration. In this review, current methods of modifying surfaces will be highlighted, and the resulting surface characteristics and biological responses are discussed. Review of the current strategies of surface modifications found that many coating types are more advantageous when used in combination; however, finding a surface modification that utilizes the mutual beneficial effects of important surface characteristics while still maintaining commercial viability is where future challenges exist.
Collapse
Affiliation(s)
- Kadie P Nobles
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Amol V Janorkar
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Randall S Williamson
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
18
|
Yu S, Guo D, Han J, Sun L, Zhu H, Yu Z, Dargusch M, Wang G. Enhancing Antibacterial Performance and Biocompatibility of Pure Titanium by a Two-Step Electrochemical Surface Coating. ACS APPLIED MATERIALS & INTERFACES 2020; 12:44433-44446. [PMID: 32914960 DOI: 10.1021/acsami.0c10032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A two-step electrochemical surface treatment has been developed to modify the CP Ti surface on commercially pure titanium grade 2 (CP Ti): (1) anodic oxidation to form TiO2 nanotube precoatings loaded with silver (Ag) and (2) microarc oxidation (MAO) to produce a porous Ca-P-Ag coating in an electrolyte containing Ag, Ca, and P. One-step MAO in the same electrolyte has also been used to produce porous Ca-P-Ag coatings without anodic oxidation and preloaded Ag as a control. Surface morphologies and alloying chemistry of the two coatings were characterized by SEM, EDS, and XPS. Biocompatibility and antimicrobial properties have been evaluated by the MTT method and co-culture of Staphylococcus aureus, respectively. It is demonstrated that porous coatings with high Ag content can be achieved on the CP Ti by the two-step treatment. The optimized MAO voltage for excellent comprehensive properties of the coating is 350 V, in which a suitable chemical equilibrium between Ag, Ca, and P contents and a Ca/P ratio of 1.67 similar to HA can be obtained, and the Ag particles are in the size of less than 100 nm and embedded into the underneath of the coating surface. After being contacted with S. aureus for 1 and 7 days, the average bactericidal rates were 99.53 and 89.27% and no cytotoxicity was detected. In comparison, the one-step MAO coatings contained less Ag, had a lower Ca/P ratio, and showed lower antimicrobial ability than the two-step treated samples.
Collapse
Affiliation(s)
- Sen Yu
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P R China
- Shaanxi Key Laboratory of Biomedical Metal Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an 710016 , P R China
| | - Dagang Guo
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P R China
| | - Jianye Han
- Shaanxi Key Laboratory of Biomedical Metal Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an 710016 , P R China
| | - Lijuan Sun
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P R China
| | - Hui Zhu
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P R China
| | - Zhentao Yu
- Shaanxi Key Laboratory of Biomedical Metal Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an 710016 , P R China
| | - Matthew Dargusch
- Centre for Advanced Materials Processing and Manufacturing (AMPAM), The University of Queensland, St Lucia, QLD 4072, Australia
| | - Gui Wang
- Centre for Advanced Materials Processing and Manufacturing (AMPAM), The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
19
|
Prosolov KA, Lastovka VV, Belyavskaya OA, Lychagin DV, Schmidt J, Sharkeev YP. Tailoring the Surface Morphology and the Crystallinity State of Cu- and Zn-Substituted Hydroxyapatites on Ti and Mg-Based Alloys. MATERIALS 2020; 13:ma13194449. [PMID: 33036465 PMCID: PMC7579569 DOI: 10.3390/ma13194449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 12/20/2022]
Abstract
Titanium-based alloys are known as a “gold standard” in the field of implantable devices. Mg-based alloys, in turn, are very promising biocompatible material for biodegradable, temporary implants. However, the clinical application of Mg-based alloys is currently limited due to the rapid resorption rate in the human body. The deposition of a barrier layer in the form of bioactive calcium phosphate coating is proposed to decelerate Mg-based alloys resorption. The dissolution rate of calcium phosphates is strongly affected by their crystallinity and structure. The structure of antibacterial Cu- and Zn-substituted hydroxyapatite deposited by an radiofrequency (RF) magnetron sputtering on Ti and Mg–Ca substrates is tailored by post-deposition heat treatment and deposition at increased substrate temperatures. It is established that upon an increase in heat treatment temperature mean crystallite size decreases from 47 ± 17 to 13 ± 9 nm. The character of the crystalline structure is not only governed by the temperature itself but relies on the condition such as either post-deposition treatment, where an amorphous calcium phosphate undergoes crystallization or instantaneous crystalline coating growth during deposition on the hot substrate. A higher treatment temperature at 700 °C results in local coating micro-cracking and induced defects, while the temperature of 400–450 °C resulted in the formation of dense, void-free structure.
Collapse
Affiliation(s)
- Konstantin A. Prosolov
- Institute of Strength Physics and Materials Science of SB RAS, Academicheskii Prospect 2/4, 634055 Tomsk, Russia; (V.V.L.); (O.A.B.); (Y.P.S.)
- Correspondence: ; Tel.: +7-961-888-58-33
| | - Vladimir V. Lastovka
- Institute of Strength Physics and Materials Science of SB RAS, Academicheskii Prospect 2/4, 634055 Tomsk, Russia; (V.V.L.); (O.A.B.); (Y.P.S.)
| | - Olga A. Belyavskaya
- Institute of Strength Physics and Materials Science of SB RAS, Academicheskii Prospect 2/4, 634055 Tomsk, Russia; (V.V.L.); (O.A.B.); (Y.P.S.)
| | - Dmitry V. Lychagin
- Department of Mineralogy and Geochemistry, National Research Tomsk State University, Lenin Avenue, 36, 634050 Tomsk, Russia;
| | - Juergen Schmidt
- Department of Electrochemistry, Innovent Technology Development, Pruessingstrasse 27 B, D-07745 Jena, Germany;
| | - Yurii P. Sharkeev
- Institute of Strength Physics and Materials Science of SB RAS, Academicheskii Prospect 2/4, 634055 Tomsk, Russia; (V.V.L.); (O.A.B.); (Y.P.S.)
- Research School of High-Energy Physics, National Research Tomsk Polytechnic University, Lenin Avenue, 30, 634050 Tomsk, Russia
| |
Collapse
|
20
|
Stevanović M, Djošić M, Janković A, Nešović K, Kojić V, Stojanović J, Grujić S, Matić Bujagić I, Rhee KY, Mišković-Stanković V. Assessing the Bioactivity of Gentamicin-Preloaded Hydroxyapatite/Chitosan Composite Coating on Titanium Substrate. ACS OMEGA 2020; 5:15433-15445. [PMID: 32637818 PMCID: PMC7331062 DOI: 10.1021/acsomega.0c01583] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/09/2020] [Indexed: 05/03/2023]
Abstract
The electrophoretic deposition process (EPD) was utilized to produce bioactive hydroxyapatite/chitosan (HAP/CS) and hydroxyapatite/chitosan/gentamicin (HAP/CS/Gent) coatings on titanium. The bioactivity of newly synthesized composite coatings was investigated in the simulated body fluid (SBF) and examined by X-ray diffraction, Fourier transform infrared spectroscopy, and field emission scanning electron microscopy. The obtained results revealed carbonate-substituted hydroxyapatite after immersion in SBF, emphasizing the similarity of the biomimetically grown HAP with the naturally occurring apatite in the bone. The formation of biomimetic HAP was confirmed by electrochemical impedance spectroscopy and polarization measurements, through the decrease in corrosion current density and coating capacitance values after 28-day immersion in SBF. The osseointegration ability was further validated by measuring the alkaline phosphatase activity (ALP) indicating the favorable osseopromotive properties of deposited coatings (significant increase in ALP levels for both HAP/CS (3.206 U mL-1) and HAP/CS/Gent (4.039 U mL-1) coatings, compared to the control (0.900 U mL-1)). Drug-release kinetics was investigated in deionized water at 37 °C by high-performance liquid chromatography coupled with mass spectrometry. Release profiles revealed the beneficial "burst-release effect" (∼21% of gentamicin released in the first 48 h) as a potentially promising solution against the biofilm formation in the initial period. When tested against human and mice fibroblast cells (MRC-5 and L929), both composite coatings showed a noncytotoxic effect (viability >85%), providing a promising basis for further medical application trials.
Collapse
Affiliation(s)
- Milena Stevanović
- Faculty
of Technology and Metallurgy, University
of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Marija Djošić
- Institute
for Technology of Nuclear and Other Mineral Raw Materials (ITNMS), Bulevar Franš d’Eperea
86, 11000 Belgrade, Serbia
| | - Ana Janković
- Faculty
of Technology and Metallurgy, University
of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Katarina Nešović
- Faculty
of Technology and Metallurgy, University
of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Vesna Kojić
- Oncology
Institute of Vojvodina, Faculty of Medicine, University of Novi Sad, Put Dr Goldmana 4, 21204 Sremska Kamenica, Serbia
| | - Jovica Stojanović
- Institute
for Technology of Nuclear and Other Mineral Raw Materials (ITNMS), Bulevar Franš d’Eperea
86, 11000 Belgrade, Serbia
| | - Svetlana Grujić
- Faculty
of Technology and Metallurgy, University
of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Ivana Matić Bujagić
- Faculty
of Technology and Metallurgy, University
of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Kyong Yop Rhee
- Department
of Mechanical Engineering, Kyung Hee University, Yongin 446-701, South Korea
| | - Vesna Mišković-Stanković
- Faculty
of Technology and Metallurgy, University
of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
- Department
of Mechanical Engineering, Kyung Hee University, Yongin 446-701, South Korea
| |
Collapse
|
21
|
Hydroxyapatite Particles—Directing the Cellular Activity in Bone Regeneration Processes: An Up-To-Date Review. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10103483] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tissue engineering has evolved quickly over the years and provided three generations of scaffolds for bone tissue applications. Numerous materials have been used to induce the desired effect at cellular levels. Mechano-transduction is a phenomenon which is now gaining the attention and focus of tissue engineering researchers. The idea of controlling the cellular fate and inducing a proper response of the human body in contact with different tissue-engineered systems is now under investigation. Moreover, in order to avoid the appearance of on-site infections and the need for a second surgery, scaffolds with dual functionality are now being developed. Hydroxyapatite (HA) is an intensively studied material in this field and various combinations are under examination for the development of such scaffolds. Various techniques were exploited over the years for HA scaffold production, in order to obtain the most accurate matrix which can mimic the native bone tissue and restore its function. Biomimetic scaffolds aim to direct the cellular fate by imitating the natural structure of the bone tissue in terms of porosity, topography, composition, and surface properties. HA particles are exploited in bone tissue engineering in many forms, such as pure or composite scaffolds or reinforcement agents. In this regard, the aim of this review is to offer a current state of art about the use and synthesis of hydroxyapatite particles and their interaction with the physiological media under certain circumstances.
Collapse
|