1
|
Abuzeyad OH, El-Khawaga AM, Tantawy H, Gobara M, Elsayed MA. Merits photocatalytic activity of rGO/zinc copper ferrite magnetic nanocatalyst for photodegradation of methylene blue (MB) dye. DISCOVER NANO 2025; 20:2. [PMID: 39753775 PMCID: PMC11699014 DOI: 10.1186/s11671-024-04162-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/02/2024] [Indexed: 01/06/2025]
Abstract
The world is now facing a water scarcity crisis due to waste, pollution, and uneven distribution of freshwater resources, which are limited. Thus, the creation of innovative, economical, and effective methods for purifying water is crucial. Here, the photo-assisted degradation of methylene blue (MB) dye under visible light and UV was achieved by using RGO photocatalyst loaded with Zn0.5Cu0.5Fe2O4 in three different loaded 10%, 20%, and 30% called MRGO 10, MRGO 20, and MRGO 30. Furthermore, all prepared samples was characterized by X-ray diffraction (XRD), fourier transformation infrared (FTIR), transmission electron microscope (TEM), vibrating sample magnetometer (VSM) and Raman analysis. After 40 min, the high photocatalytic efficacy effectively eliminated about 95.2% of the 10 ppm MB using 20 mg of MRGO 20 NPs at pH9 Visible light. From the results, the photocatalytic activity of MRGO 20 reduced to 54.6% after five cycles of methylene blue (MB) dye degradation. The produced samples' observed efficacy in both UV and visible light may encourage continued research into more effective photocatalysts for the filtration of water.
Collapse
Affiliation(s)
- Osama H Abuzeyad
- Department of Chemical Engineering, Military Technical College (MTC), Cairo, Egypt.
| | - Ahmed M El-Khawaga
- Department of Basic Medical Sciences, Faculty of Medicine, Galala University, Galala City, Suez, 43511, Egypt.
| | - Hesham Tantawy
- Department of Chemical Engineering, Military Technical College (MTC), Cairo, Egypt
| | - Mohamed Gobara
- Department of Chemical Engineering, Military Technical College (MTC), Cairo, Egypt
| | - Mohamed A Elsayed
- Department of Chemical Engineering, Military Technical College (MTC), Cairo, Egypt
| |
Collapse
|
2
|
Ning XF, Zhu YQ, Sun H, Yang Y, Liu MX. The Latest Applications of Carbon-Nitride-Based Materials for Combination Treatment of Cancer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:64410-64423. [PMID: 39530540 DOI: 10.1021/acsami.4c12350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Carbon-nitride-based (CN-based) materials have shown great potential in combination therapy in recent years. Due to their outstanding biocompatibility, ease of modification, and adjustable band-gap position, CN-based materials can be applied as photosensitizers in photodynamic therapy (PDT) and light-driven water-splitting catalysts in gas therapy. After doping with other elements, the photocatalytic performance of CN-based materials will be enhanced, and more interesting functions will be obtained. In addition, the large specific surface area also promotes CN-based materials as drug carriers combined with other therapeutic modalities to achieve combination therapy. This Review analyzes and summarizes the latest research on CN-based materials in combined therapies, such as PDT with photothermal therapy (PTT), PDT with sonodynamic therapy (SDT), PDT with drug therapy, PDT with gene therapy, gas therapy with PDT, and bioimaging-guided combined therapy. In particular, the applications of CN-based materials in gas and gene combination therapy are summarized for the first time. Finally, the current challenges faced by CN-based materials in combination therapy are further discussed.
Collapse
Affiliation(s)
- Xu-Feng Ning
- School of Pharmacy and Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, 226001, Nantong, Jiangsu, People's Republic of China
- Department of Gastroenterology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Ya-Qi Zhu
- School of Pharmacy and Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, 226001, Nantong, Jiangsu, People's Republic of China
| | - Hao Sun
- School of Pharmacy and Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, 226001, Nantong, Jiangsu, People's Republic of China
| | - Yuan Yang
- Department of Gastroenterology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Ming-Xuan Liu
- School of Pharmacy and Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, 226001, Nantong, Jiangsu, People's Republic of China
| |
Collapse
|
3
|
Chenab KK, Malektaj H, Nadinlooie AAR, Mohammadi S, Zamani-Meymian MR. Intertumoral and intratumoral barriers as approaches for drug delivery and theranostics to solid tumors using stimuli-responsive materials. Mikrochim Acta 2024; 191:541. [PMID: 39150483 DOI: 10.1007/s00604-024-06583-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
The solid tumors provide a series of biological barriers in cellular microenvironment for designing drug delivery methods based on advanced stimuli-responsive materials. These intertumoral and intratumoral barriers consist of perforated endotheliums, tumor cell crowding, vascularity, lymphatic drainage blocking effect, extracellular matrix (ECM) proteins, hypoxia, and acidosis. Triggering opportunities have been drawn for solid tumor therapies based on single and dual stimuli-responsive drug delivery systems (DDSs) that not only improved drug targeting in deeper sites of the tumor microenvironments, but also facilitated the antitumor drug release efficiency. Single and dual stimuli-responsive materials which are known for their lowest side effects can be categorized in 17 main groups which involve to internal and external stimuli anticancer drug carriers in proportion to microenvironments of targeted solid tumors. Development of such drug carriers can circumvent barriers in clinical trial studies based on their superior capabilities in penetrating into more inaccessible sites of the tumor tissues. In recent designs, key characteristics of these DDSs such as fast response to intracellular and extracellular factors, effective cytotoxicity with minimum side effect, efficient permeability, and rate and location of drug release have been discussed as core concerns of designing paradigms of these materials.
Collapse
Affiliation(s)
- Karim Khanmohammadi Chenab
- Department of Chemistry, Iran University of Science and Technology, Tehran, P.O. Box 16846-13114, Iran
- Department of Physics, Iran University of Science and Technology, Tehran, P.O. Box 16846-13114, Iran
| | - Haniyeh Malektaj
- Department of Materials and Production, Aalborg University, Fibigerstraede 16, 9220, Aalborg, Denmark
| | | | | | | |
Collapse
|
4
|
Zhao Z, Wu D, Lv D, Zhang X, Chen L, Zhang B. Supported of gold nanoparticles on carboxymethyl lignin modified magnetic nanoparticles as an efficient catalyst for reduction of nitroarenes and treatment of human melanoma. Int J Biol Macromol 2024; 270:132250. [PMID: 38729467 DOI: 10.1016/j.ijbiomac.2024.132250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
This article represents the synthesis and characterizations of Au NPs immobilized and carboxymethyl lignin (CML) modified Fe3O4 nanoparticles (Fe3O4@CML/Au NPs) following a bio-inspired protocol without the participation of any toxic and harmful reductant or stabilizers. Following various physicochemical methodologies, such as FT-IR, FE-SEM, TEM, EDX, XRD, VSM, and ICP-OES, the textural characteristics and different structural aspects were evaluated. The Fe3O4@CML/Au NPs nanocomposite was subsequently explored towards the catalytic reduction of diverse aromatic nitro functions using green conditions. An excellent yield were achieved within very short reaction time. Nine recycling runs of the nanocatalyst were completed without a discernible loss of catalytic activity, thanks to its easy magnetic recovery. The DPPH assay was carried out to examine the antioxidant effectiveness. The Fe3O4@CML/Au NPs nanocomposite inhibited half of the DPPH in a 250 μg/mL solution. To measure the anti-human melanoma efficacy of Fe3O4@CML/Au NPs nanocomposite, MTT assay was applied on HT144, MUM2C, IPC-298 and SKMEL24 cell lines. Fe3O4@CML/Au NPs nanocomposite had high anti-human melanoma efficacy on above tumor cells. The best finding of anti-human melanoma properties of Fe3O4@CML/Au NPs nanocomposite was seen in the case of the SKMEL24 cell line. The IC50 of Fe3O4@CML/Au NPs nanocomposite was 137, 145, 185, and 125 μg/mL against HT144, MUM2C, IPC-298 and SKMEL24 cells, respectively. This research exhibited remarkable anti-human melanoma and antioxidant efficacies of Fe3O4@CML/Au NPs nanocomposite in the in vitro condition.
Collapse
Affiliation(s)
- Zunjiang Zhao
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu 241004, Anhui, China.
| | - Dejin Wu
- Department of Burns and Plastic Surgery, Lu'an People's Hospital, Anhui Medical University, Lu'an 237005, Anhui, China
| | - Dalun Lv
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu 241004, Anhui, China
| | - Xuan Zhang
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu 241004, Anhui, China; Department of Burns and Plastic Surgery, An Qing 116 Hospital, An Qing 246003, Anhui, China
| | - Lei Chen
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu 241004, Anhui, China
| | - Baode Zhang
- Department of Burns and Plastic Surgery, Lu'an People's Hospital, Anhui Medical University, Lu'an 237005, Anhui, China
| |
Collapse
|
5
|
Gatou MA, Skylla E, Dourou P, Pippa N, Gazouli M, Lagopati N, Pavlatou EA. Magnesium Oxide (MgO) Nanoparticles: Synthetic Strategies and Biomedical Applications. CRYSTALS 2024; 14:215. [DOI: 10.3390/cryst14030215] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
In recent times, there has been considerable interest among researchers in magnesium oxide (MgO) nanoparticles, due to their excellent biocompatibility, stability, and diverse biomedical uses, such as antimicrobial, antioxidant, anticancer, and antidiabetic properties, as well as tissue engineering, bioimaging, and drug delivery applications. Consequently, the escalating utilization of magnesium oxide nanoparticles in medical contexts necessitates the in-depth exploration of these nanoparticles. Notably, existing literature lacks a comprehensive review of magnesium oxide nanoparticles’ synthesis methods, detailed biomedical applications with mechanisms, and toxicity assessments. Thus, this review aims to bridge this gap by furnishing a comprehensive insight into various synthetic approaches for the development of MgO nanoparticles. Additionally, it elucidates their noteworthy biomedical applications as well as their potential mechanisms of action, alongside summarizing their toxicity profiles. This article also highlights challenges and future prospects for further exploring MgO nanoparticles in the biomedical field. Existing literature indicates that synthesized magnesium oxide nanoparticles demonstrate substantial biocompatibility and display significant antibacterial, antifungal, anticancer, and antioxidant properties. Consequently, this review intends to enhance readers’ comprehension regarding recent advancements in synthesizing MgO nanoparticles through diverse approaches and their promising applications in biomedicine.
Collapse
Affiliation(s)
- Maria-Anna Gatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| | - Eirini Skylla
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| | - Panagiota Dourou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- School of Science and Technology, Hellenic Open University, 26335 Patra, Greece
| | - Nefeli Lagopati
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Evangelia A. Pavlatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| |
Collapse
|
6
|
Roshani M, Rezaian-Isfahni A, Lotfalizadeh MH, Khassafi N, Abadi MHJN, Nejati M. Metal nanoparticles as a potential technique for the diagnosis and treatment of gastrointestinal cancer: a comprehensive review. Cancer Cell Int 2023; 23:280. [PMID: 37981671 PMCID: PMC10657605 DOI: 10.1186/s12935-023-03115-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/27/2023] [Indexed: 11/21/2023] Open
Abstract
Gastrointestinal (GI) cancer is a major health problem worldwide, and current diagnostic and therapeutic approaches are often inadequate. Various metallic nanoparticles (MNPs) have been widely studied for several biomedical applications, including cancer. They may potentially overcome the challenges associated with conventional chemotherapy and significantly impact the overall survival of GI cancer patients. Functionalized MNPs with targeted ligands provide more efficient localization of tumor energy deposition, better solubility and stability, and specific targeting properties. In addition to enhanced therapeutic efficacy, MNPs are also a diagnostic tool for molecular imaging of malignant lesions, enabling non-invasive imaging or detection of tumor-specific or tumor-associated antigens. MNP-based therapeutic systems enable simultaneous stability and solubility of encapsulated drugs and regulate the delivery of therapeutic agents directly to tumor cells, which improves therapeutic efficacy and minimizes drug toxicity and leakage into normal cells. However, metal nanoparticles have been shown to have a cytotoxic effect on cells in vitro. This can be a concern when using metal nanoparticles for cancer treatment, as they may also kill healthy cells in addition to cancer cells. In this review, we provide an overview of the current state of the field, including preparation methods of MNPs, clinical applications, and advances in their use in targeted GI cancer therapy, as well as the advantages and limitations of using metal nanoparticles for the diagnosis and treatment of gastrointestinal cancer such as potential toxicity. We also discuss potential future directions and areas for further research, including the development of novel MNP-based approaches and the optimization of existing approaches.
Collapse
Affiliation(s)
- Mohammad Roshani
- Internal Medicine and Gastroenterology, Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Arya Rezaian-Isfahni
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Negar Khassafi
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Hassan Jafari Najaf Abadi
- Research Center for Health Technology Assessment and Medical Informatics, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Majid Nejati
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
7
|
Freitas DC, Mazali IO, Sigoli FA, da Silva Francischini D, Arruda MAZ. The microwave-assisted synthesis of silica nanoparticles and their applications in a soy plant culture. RSC Adv 2023; 13:27648-27656. [PMID: 37727588 PMCID: PMC10505942 DOI: 10.1039/d3ra05648a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/10/2023] [Indexed: 09/21/2023] Open
Abstract
A rapid and environmentally friendly synthesis of thermodynamically stable silica nanoparticles (SiO2-NPs) from heating via microwave irradiation (MW) compared to conductive heating is presented, as well as their evaluations in a soy plant culture. The parameters of time and microwave power were evaluated for the optimization of the heating program. Characterization of the produced nanomaterials was obtained from the dynamic light scattering (DLS) and zeta potential analyses, and the morphology of the SiO2-NPs was obtained by transmission electron microcopy (TEM) images. From the proposed synthesis, stable, monodisperse, and amorphous SiO2-NPs were obtained. Average sizes reported by DLS and TEM techniques were equal to 11.6 nm and 13.8 nm, respectively. The water-stable suspension of SiO2-NPs shows a zeta potential of -31.80 mV, and the homogeneously spheroidal morphology observed by TEM corroborates with the low polydispersity values (0.300). Additionally, the TEM with fast Fourier transform (FFT), demonstrates the amorphous characteristic of the nanoparticles. The MW-based synthesis is 30 times faster, utilizes 4-fold less reagents, and is ca. 18-fold cheaper than conventional synthesis through conductive heating. After the synthesis, the SiO2-NPs were added to the soil used for the cultivation of soybeans, and the homeostasis for Cu, Ni, and Zn was evaluated through the determination of their total contents by inductively coupled plasma mass spectrometry (ICP-MS) in soy leaves and also through bioimages obtained using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Although the results corroborate through both techniques, they also show the influence of these nanoparticles on the elemental distribution of the leaf surface with altered homeostasis of such elements from both transgenic crops compared to the control group.
Collapse
Affiliation(s)
- Daniel Carneiro Freitas
- Spectrometry, Sample Preparation and Mechanization Group, Institute of Chemistry, University of Campinas - Unicamp P.O. Box 6154 Campinas SP 13083-970 Brazil
- National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas - Unicamp P.O. Box 6154 Campinas SP 13083-970 Brazil
| | - Italo Odone Mazali
- Functional Materials Laboratory - Institute of Chemistry, University of Campinas - UNICAMP P. O. Box 6154 13083-970 Campinas SP Brazil
| | - Fernando Aparecido Sigoli
- Functional Materials Laboratory - Institute of Chemistry, University of Campinas - UNICAMP P. O. Box 6154 13083-970 Campinas SP Brazil
| | - Danielle da Silva Francischini
- Spectrometry, Sample Preparation and Mechanization Group, Institute of Chemistry, University of Campinas - Unicamp P.O. Box 6154 Campinas SP 13083-970 Brazil
- National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas - Unicamp P.O. Box 6154 Campinas SP 13083-970 Brazil
| | - Marco Aurélio Zezzi Arruda
- Spectrometry, Sample Preparation and Mechanization Group, Institute of Chemistry, University of Campinas - Unicamp P.O. Box 6154 Campinas SP 13083-970 Brazil
- National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas - Unicamp P.O. Box 6154 Campinas SP 13083-970 Brazil
| |
Collapse
|
8
|
Abdouss H, Pourmadadi M, Zahedi P, Abdouss M, Yazdian F, Rahdar A, Díez-Pascual AM. Green synthesis of chitosan/polyacrylic acid/graphitic carbon nitride nanocarrier as a potential pH-sensitive system for curcumin delivery to MCF-7 breast cancer cells. Int J Biol Macromol 2023; 242:125134. [PMID: 37257532 DOI: 10.1016/j.ijbiomac.2023.125134] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
A novel pH-sensitive nanocarrier containing chitosan (CS), polyacrylic acid (PAA), and graphitic carbon nitride (g-C3N4) was designed via water/oil/water (W/O/W) emulsification to administer curcumin (CUR) drug. g-C3N4 nanosheets with a high surface area and porous structure were produced via simple one-step pyrolysis process using thiourea as precursor, and incorporated into CS/PAA hydrogel. X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR) were used to assess the crystalline structure of the nanocarrier and the interactions between its components, respectively. Scanning electron microscopy (SEM) images revealed a spherical structure and confirmed the g-C3N4 impregnation into the CS/PAA matrix. Zeta potential and dynamic light scattering (DLS) provided information about the surface charge and average size distribution. High CUR loading and entrapment efficiencies were obtained, which were further improved upon addition of g-C3N4. The release kinetics of drug-loaded CS/PAA/g-C3N4 nanocomposites were investigated at pH = 5.4 and pH = 7.4, and the results showed an excellent controlled pH-sensitive release profile. Cell apoptosis and in vitro cytotoxicity were investigated using flow cytometry and MTT analyses. CS/PAA/g-C3N4/CUR resulted in the highest rate of apoptosis in MCF-7 breast cancer cells, demonstrating the excellent nanocomposite efficacy in eliminating cancerous cells. CS/PAA hydrogel coated with g-C3N4 shows great potential for pH-sensitive controlled drug release.
Collapse
Affiliation(s)
- Hamidreza Abdouss
- Department of Polymer, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mehrab Pourmadadi
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran 1417935840, Iran
| | - Payam Zahedi
- Department of Polymer, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran.
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran.
| | - Abbas Rahdar
- Department of Physics, Faculty of Sciences, University of Zabol, Zabol 538-98615, Iran.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
9
|
Dinakar YH, Karole A, Parvez S, Jain V, Mudavath SL. Organ-restricted delivery through stimuli-responsive nanocarriers for lung cancer therapy. Life Sci 2022; 310:121133. [DOI: 10.1016/j.lfs.2022.121133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
|
10
|
Rostami M, Badiei A, Ganjali MR, Rahimi-Nasrabadi M, Naddafi M, Karimi-Maleh H. Nano-architectural design of TiO 2 for high performance photocatalytic degradation of organic pollutant: A review. ENVIRONMENTAL RESEARCH 2022; 212:113347. [PMID: 35513059 DOI: 10.1016/j.envres.2022.113347] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/18/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
In the past several decades, significant efforts have been paid toward photocatalytic degradation of organic pollutants in environmental research. During the past years, titanium dioxide nano-architectures (TiO2 NAs) have been widely used in water purification applications with photocatalytic degradation processes under Uv/Vis light illumination. Photocatalysis process with nano-architectural design of TiO2 is viewed as an efficient procedure for directly channeling solar energy into water treatment reactions. The considerable band-gap values and the subsequent short life time of photo-generated charge carriers are showed among the limitations of this approach. One of these effective efforts is the using of oxidation processes with advance semiconductor photocatalyst NAs for degradation the organic pollutants under UV/Vis irradiation. Among them, nano-architectural design of TiO2 photocatalyst (such as Janus, yolk-shell (Y@S), hollow microspheres (HMSs) and nano-belt) is an effective way to improve oxidation processes for increasing photocatalytic activity in water treatment applications. In the light of the above issues, this study tends to provide a critical overview of the used strategies for preparing TiO2 photocatalysts with desirable physicochemical properties like enhanced absorption of light, low density, high surface area, photo-stability, and charge-carrier behavior. Among the various nanoarchitectural design of TiO2, the Y@S and HMSs have created a great appeal given their considerable large surface area, low density, homogeneous catalytic environment, favorable light harvesting properties, and enhanced molecular diffusion kinetics of the particles. In this review was summarized the developments that have been made for nano-architectural design of TiO2 photocatalyst. Additional focus is placed on the realization of interfacial charge and the possibility of achieving charge carriers separation for these NAs as electron migration is the extremely important factor for increasing the photocatalytic activity.
Collapse
Affiliation(s)
- Mojtaba Rostami
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran; Biosensor Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Rahimi-Nasrabadi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran; Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran; Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Freiberg, 09599, Germany
| | - Mastoureh Naddafi
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, PR China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran; Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus 2028, Johannesburg, 17011, South Africa.
| |
Collapse
|
11
|
Saeed U, Jilani A, Iqbal J, Al-Turaif H. Reduced graphene oxide-assisted graphitic carbon nitride@ZnO rods for enhanced physical and photocatalytic degradation. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
12
|
Abedini A, Rostami M, Banafshe HR, Rahimi-Nasrabadi M, SobhaniNasab A, Ganjali MR. Utility of Biogenic Iron and Its Bimetallic Nanocomposites for Biomedical Applications: A Review. Front Chem 2022; 10:893793. [PMID: 35844637 PMCID: PMC9283709 DOI: 10.3389/fchem.2022.893793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/06/2022] [Indexed: 11/22/2022] Open
Abstract
Nanotechnology mainly deals with the production and application of compounds with dimensions in nanoscale. Given their dimensions, these materials have considerable surface/volume ratios, and hence, specific characteristics. Nowadays, environmentally friendly procedures are being proposed for fabrication of Fe nanoparticles because a large amount of poisonous chemicals and unfavorable conditions are needed to prepare them. This work includes an inclusive overview on the economical and green procedures for the preparation of such nanoparticles (flower, fruits, tea, carbohydrates, and leaves). Pure and bimetallic iron nanoparticles, for instance, offer a high bandwidth and excitation binding energy and are applicable in different areas ranging from antibacterial, anticancer, and bioimaging agents to drug delivery systems. Preparation of nano-sized particles, such as those of Fe, requires the application of high quantities of toxic materials and harsh conditions, and naturally, there is a tendency to develop more facile and even green pathways (Sultana, Journal of Materials Science & Technology, 2013, 29, 795–800; Bushra et al., Journal of hazardous materials, 2014, 264, 481–489; Khan et al., Ind. Eng. Chem. Res., 2015, 54, 76–82). This article tends to provide an overview on the reports describing green and biological methods for the synthesis of Fe nanoparticles. The present review mainly highlights selenium nanoparticles in the biomedical domain. Specifically, this review will present detailed information on drug delivery, bioimaging, antibacterial, and anticancer activity. It will also focus on procedures for their green synthesis methods and properties that make them potential candidates for various biomedical applications. Finally, we provide a detailed future outlook.
Collapse
Affiliation(s)
- Ali Abedini
- Young Researchers and Elite club, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mojtaba Rostami
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
- International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
| | - Hamid Reza Banafshe
- Department of Pharmacology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehdi Rahimi-Nasrabadi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Freiberg, Germany
| | - Ali SobhaniNasab
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Core Research Lab, Kashan University of Medical Sciences, Kashan, Iran
- *Correspondence: Ali SobhaniNasab,
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
13
|
Rostami M, Badiei A, Sorouri AM, Fasihi-Ramandi M, Ganjali MR, Rahimi-Nasrabadi M, Ahmadi F. Cur-loaded magnetic ZnFe2O4@L-cysteine – Ox, N-rich mesoporous -gC3N4 nanocarriers as a targeted sonodynamic chemotherapeutic agent for enhanced tumor eradication. SURFACES AND INTERFACES 2022; 30:101900. [DOI: 10.1016/j.surfin.2022.101900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
|
14
|
Liu R, Zhang Y, Deng P, Huang W, Yin R, Yu L, Li Y, Zhang S, Ni Y, Ling C, Zhu Z, Wu S, Li S. Construction of targeted delivery system for curcumin loaded on magnetic α-Fe 2O 3/Fe 3O 4 heterogeneous nanotubes and its apoptosis mechanism on MCF-7 cell. BIOMATERIALS ADVANCES 2022; 136:212783. [PMID: 35929317 DOI: 10.1016/j.bioadv.2022.212783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 03/03/2022] [Accepted: 03/26/2022] [Indexed: 06/15/2023]
Abstract
In this work, the magnetic α-Fe2O3/Fe3O4 heterogeneous nanotubes were successfully prepared by solvent hydrothermal-controlled calcination method. The effects of additive concentration, hydrothermal temperature and time on morphology of products were investigated. The α-Fe2O3/Fe3O4 nanotubes with a saturation magnetization of 50 emu/g were prepared calcinated at 600 °C for 4 h using 0.8 g of glucose. Their average length, the outer and inner diameters were around 240 nm, 178 nm and 145 nm, respectively. The α-Fe2O3/Fe3O4 heterogeneous nanotubes coated with water-soluble liposome were applied for targeted delivery of curcumin. The release of curcumin inside the hollow structure of the nanocomposites could be triggered and effectively sustained represented a process of slow release. The encapsulation efficiency of curcumin in the α-Fe2O3/Fe3O4-CUR@LIP nanocomposites reached 82.1 ± 0.9%. MTT assays demonstrated that blank carriers had excellent biocompatibility and application of magnetic field significantly elevated the cytotoxicity of α-Fe2O3/Fe3O4-CUR@LIP nanocomposites on MCF-7 cell. Electrochemical experiment and Prussian blue staining indicated that the α-Fe2O3/Fe3O4@LIP nanocomposites could aggregate in cells to promote the internalization of curcumin. Magnetic α-Fe2O3/Fe3O4-CUR@LIP nanocomposites and curcumin enhanced the expression of reactive oxygen species in MCF-7 cells and induced apoptosis by fluorescence detection. Flow cytometry and western blot verified that the α-Fe2O3/Fe3O4@LIP nanocomposites under magnetic field enhanced cells late-apoptosis by adjusting the expression of apoptosis-related proteins.
Collapse
Affiliation(s)
- Ruijiang Liu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Yanling Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Peng Deng
- The People's Hospital of Danyang, Zhenjiang 212300, PR China
| | - Wei Huang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Ruitong Yin
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Lulu Yu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - You Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Shaoshuai Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Yun Ni
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Chen Ling
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Ziye Zhu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Shaobo Wu
- Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang 212013, PR China.
| | - Shasha Li
- Affiliated Kunshan Hospital, Jiangsu University, Suzhou 215300, PR China.
| |
Collapse
|
15
|
Shariatinia Z. Big family of nano- and microscale drug delivery systems ranging from inorganic materials to polymeric and stimuli-responsive carriers as well as drug-conjugates. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|