1
|
Popescu AGM, Tudose IV, Romanitan C, Popescu M, Manica M, Schiopu P, Vladescu M, Suchea MP, Pachiu C. Raman Study of Novel Nanostructured WO 3 Thin Films Grown by Spray Deposition. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1227. [PMID: 39057903 PMCID: PMC11279887 DOI: 10.3390/nano14141227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
The present communication reports on the effect of the sprayed solution volume variation (as a thickness variation element) on the detailed Raman spectroscopy for WO3 thin films with different thicknesses grown from precursor solutions with two different concentrations. Walls-like structured monoclinic WO3 thin films were obtained by the spray deposition method for further integration in gas sensors. A detailed analysis of the two series of samples shows that the increase in thickness strongly affects the films' morphology, while their crystalline structure is only slightly affected. The Raman analysis contributes to refining the structural feature clarifications. It was observed that, for 0.05 M precursor concentration series, thinner films (lower volume) show less intense peaks, indicating more defects and lower crystallinity, while thicker films (higher volume) exhibit sharper and more intense peaks, suggesting improved crystallinity and structural order. For higher precursor concentration 0.1 M series, films at higher precursor concentrations show overall more intense and sharper peaks across all thicknesses, indicating higher crystallinity and fewer defects. Differences in peak intensity and presence reflect variations in film morphology and structural properties due to increased precursor concentration. Further studies are ongoing.
Collapse
Affiliation(s)
- Andreea Gabriela Marina Popescu
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A, Erou Iancu Nicolae Street, 077190 Voluntari, Romania; (A.G.M.P.); (C.R.); (M.P.); (M.M.)
- Doctoral School of Electronics, Telecommunications and Information Technology, National University of Science and Technology POLITEHNICA Bucharest, 061071 Bucharest, Romania; (P.S.); (M.V.)
| | - Ioan Valentin Tudose
- Center of Materials Technology and Photonics, School of Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece;
- Chemistry Department, University of Crete, 70013 Heraklion, Greece
| | - Cosmin Romanitan
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A, Erou Iancu Nicolae Street, 077190 Voluntari, Romania; (A.G.M.P.); (C.R.); (M.P.); (M.M.)
| | - Marian Popescu
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A, Erou Iancu Nicolae Street, 077190 Voluntari, Romania; (A.G.M.P.); (C.R.); (M.P.); (M.M.)
| | - Marina Manica
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A, Erou Iancu Nicolae Street, 077190 Voluntari, Romania; (A.G.M.P.); (C.R.); (M.P.); (M.M.)
| | - Paul Schiopu
- Doctoral School of Electronics, Telecommunications and Information Technology, National University of Science and Technology POLITEHNICA Bucharest, 061071 Bucharest, Romania; (P.S.); (M.V.)
| | - Marian Vladescu
- Doctoral School of Electronics, Telecommunications and Information Technology, National University of Science and Technology POLITEHNICA Bucharest, 061071 Bucharest, Romania; (P.S.); (M.V.)
| | - Mirela Petruta Suchea
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A, Erou Iancu Nicolae Street, 077190 Voluntari, Romania; (A.G.M.P.); (C.R.); (M.P.); (M.M.)
- Center of Materials Technology and Photonics, School of Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece;
| | - Cristina Pachiu
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A, Erou Iancu Nicolae Street, 077190 Voluntari, Romania; (A.G.M.P.); (C.R.); (M.P.); (M.M.)
| |
Collapse
|
2
|
Li X, Fu L, Karimi-Maleh H, Chen F, Zhao S. Innovations in WO 3 gas sensors: Nanostructure engineering, functionalization, and future perspectives. Heliyon 2024; 10:e27740. [PMID: 38515674 PMCID: PMC10955316 DOI: 10.1016/j.heliyon.2024.e27740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024] Open
Abstract
This review critically examines the progress and challenges in the field of nanostructured tungsten oxide (WO3) gas sensors. It delves into the significant advancements achieved through nanostructuring and composite formation of WO3, which have markedly improved sensor sensitivity for gases like NO2, NH3, and VOCs, achieving detection limits in the ppb range. The review systematically explores various innovative approaches, such as doping WO3 with transition metals, creating heterojunctions with materials like CuO and graphene, and employing machine learning models to optimize sensor configurations. The challenges facing WO3 sensors are also thoroughly examined. Key issues include cross-sensitivity to different gases, particularly at higher temperatures, and long-term stability affected by factors like grain growth and volatility of dopants. The review assesses potential solutions to these challenges, including statistical analysis of sensor arrays, surface functionalization, and the use of novel nanostructures for enhanced performance and selectivity. In addition, the review discusses the impact of ambient humidity on sensor performance and the current strategies to mitigate it, such as composite materials with humidity shielding effects and surface functionalization with hydrophobic groups. The need for high operating temperatures, leading to higher power consumption, is also addressed, along with possible solutions like the use of advanced materials and new transduction principles to lower temperature requirements. The review concludes by highlighting the necessity for a multidisciplinary approach in future research. This approach should combine materials synthesis, device engineering, and data science to develop the next generation of WO3 sensors with enhanced sensitivity, ultrafast response rates, and improved portability. The integration of machine learning and IoT connectivity is posited as a key driver for new applications in areas like personal exposure monitoring, wearable diagnostics, and smart city networks, underlining WO3's potential as a robust gas sensing material in future technological advancements.
Collapse
Affiliation(s)
- Xingxing Li
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Chengdu, PR China
- School of Engineering, Lebanese American University, Byblos, Lebanon
| | - Fei Chen
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Shichao Zhao
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| |
Collapse
|
3
|
Imran M, Kim EB, Kim TG, Ameen S, Akhtar MS, Kwak DH. Fabrication of Tungsten Oxide Nanowalls through HFCVD for Improved Electrochemical Detection of Methylamine. MICROMACHINES 2024; 15:441. [PMID: 38675252 PMCID: PMC11051922 DOI: 10.3390/mi15040441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/10/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024]
Abstract
In this study, well-defined tungsten oxide (WO3) nanowall (NW) thin films were synthesized via a controlled hot filament chemical vapor deposition (HFCVD) technique and applied for electrochemical detection of methylamine toxic substances. Herein, for the thin-film growth by HFCVD, the temperature of tungsten (W) wire was held constant at ~1450 °C and gasification was performed by heating of W wire using varied substrate temperatures ranging from 350 °C to 450 °C. At an optimized growth temperature of 400 °C, well-defined and extremely dense WO3 nanowall-like structures were developed on a Si substrate. Structural, crystallographic, and compositional characterizations confirmed that the deposited WO3 thin films possessed monoclinic crystal structures of high crystal quality. For electrochemical sensing applications, WO3 NW thin film was used as an electrode, and cyclic voltammetry (CV) and linear sweep voltammetry (LSV) were measured with a wide concentration range of 20 μM~1 mM of methylamine. The fabricated electrochemical sensor achieved a sensitivity of ~183.65 μA mM-1 cm-2, a limit of detection (LOD) of ~20 μM and a quick response time of 10 s. Thus, the fabricated electrochemical sensor exhibited promising detection of methylamine with considerable stability and reproducibility.
Collapse
Affiliation(s)
- Mohammad Imran
- Advanced Materials and Devices Laboratory, Department of Bio-Convergence Science, Jeonbuk National University, Jeongeup Campus, Jeongeup 56212, Republic of Korea; (M.I.); (E.-B.K.)
- Environmental Engineering Laboratory, Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Eun-Bi Kim
- Advanced Materials and Devices Laboratory, Department of Bio-Convergence Science, Jeonbuk National University, Jeongeup Campus, Jeongeup 56212, Republic of Korea; (M.I.); (E.-B.K.)
| | - Tae-Geum Kim
- Department of Bio-Convergence Science, Jeonbuk National University, Jeongeup Campus, Jeongeup 56212, Republic of Korea;
| | - Sadia Ameen
- Advanced Materials and Devices Laboratory, Department of Bio-Convergence Science, Jeonbuk National University, Jeongeup Campus, Jeongeup 56212, Republic of Korea; (M.I.); (E.-B.K.)
| | - Mohammad Shaheer Akhtar
- Graduate School of Integrated Energy-AI, Jeonbuk National University, Jeonju 54896, Republic of Korea
- New & Renewable Energy Material Development Center (NewREC), Jeonbuk National University, Jeonbuk 56332, Republic of Korea
- Department of JBNU-KIST Industry-Academia Convergence Research, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Dong-Heui Kwak
- Environmental Engineering Laboratory, Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
4
|
Dutta P, Verma M, Paliwal MS, Mondal I, Ganesha MK, Gupta R, Singh AK, Kulkarni GU. Dual-Functional Electrochromic Smart Window Using WO 3·H 2O-rGO Nanocomposite Ink Spray-Coated on a Low-Cost Hybrid Electrode. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38048181 DOI: 10.1021/acsami.3c11337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Electrochromic windows have gained growing interest for their ability to change their optical state in the visible and NIR ranges with minimal input power, making them energy-efficient. However, material processing costs, fabrication complexity, and poor electrochromic properties can be barriers to the widespread adoption of this technology. To address these issues, electrochromic material and fabrication processes are designed to realize their potential as a cost-effective and energy-efficient technology. In this work, an electrochromic composite material-based ink is synthesized consisting of WO3·H2O nanoplates supported on rGO (reduced graphene oxide) nanosheets (WH-rGO), wherein an optimized amount of rGO (0.05 to 0.5 wt %) is introduced for providing a higher conduction pathway for efficient charge transport without sacrificing the electrochromic performance of WO3·H2O nanoplates. The stable ink dispersion prepared in the study is deposited by spray coating on transparent conducting electrodes over large areas (25 cm2). The WH-rGO nanocomposite (0.4 wt %) results in 43% optical modulation at 700 nm, with bleaching and coloration times of 6 and 8 s, respectively. Interestingly, the device also possesses an electrochemical energy storage capability with an areal capacitance of 16.3 mF/cm2. The electrochromic composite material is successfully translated on tin doped indium oxide (ITO)-coated Al metal mesh hybrid electrodes (T = 80%, Rs = 40 Ω/□) to replace ITO. Finally, an electrochromic device of 5 × 5 cm2 is fabricated by spray-coating the ink on cost-effective ITO/Al-mesh hybrid electrodes. The device displays blue to colorless modulation with an excellent bleaching time of 0.43 s and a coloration time of 2.16 s, making it one among the fast-operating devices fabricated by complete solution processing. This work showcases the economical production of a dual-function electrochromic device, which can be a feasible option as an alternative to existing ITO-based devices in both automotive and infrastructure applications.
Collapse
Affiliation(s)
- Pritha Dutta
- Centre for Nano and Soft Matter Sciences, Bangalore 562162, Karnataka, India
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Mohit Verma
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur 342037, Rajasthan, India
| | - Mayank S Paliwal
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur 342037, Rajasthan, India
| | - Indrajit Mondal
- Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, Karnataka, India
| | - Mukhesh K Ganesha
- Centre for Nano and Soft Matter Sciences, Bangalore 562162, Karnataka, India
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Ritu Gupta
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur 342037, Rajasthan, India
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas 110016, Delhi, India
| | - Ashutosh K Singh
- Centre for Nano and Soft Matter Sciences, Bangalore 562162, Karnataka, India
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Giridhar U Kulkarni
- Centre for Nano and Soft Matter Sciences, Bangalore 562162, Karnataka, India
- Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, Karnataka, India
| |
Collapse
|
5
|
Zhou X, Huang E, Zhang R, Xiang H, Zhong W, Xu B. Multicolor Tunable Electrochromic Materials Based on the Burstein-Moss Effect. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101580. [PMID: 37241997 DOI: 10.3390/nano13101580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023]
Abstract
Inorganic electrochromic (EC) materials, which can reversibly switch their optical properties by current or potential, are at the forefront of commercialization of displays and smart windows. However, most inorganic EC materials have challenges in achieving multicolor tunability. Here, we propose that the Burstein-Moss (BM) effect, which could widen the optical gap by carrier density, could be a potential mechanism to realize the multicolor tunable EC phenomenon. Degenerated semiconductors with suitable fundament band gaps and effective carrier masses could be potential candidates for multicolor tunable EC materials based on the BM effect. We select bulk Y2CF2 as an example to illustrate multicolor tunability based on the BM effect. In addition to multicolor tunability, the BM effect also could endow EC devices with the ability to selectively modulate the absorption for near infrared and visible light, but with a simpler device structure. Thus, we believe that this mechanism could be applied to design novel EC smart windows with unprecedented functions.
Collapse
Affiliation(s)
- Xia Zhou
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Enhui Huang
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Rui Zhang
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Hui Xiang
- School of Mathematics and Physics, Hubei Polytechnic University, Huangshi 435003, China
| | - Wenying Zhong
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Bo Xu
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
6
|
Kwon H, Kim S, Ham M, Park Y, Kim H, Lee W, Lee H. Enhanced Coloration Time of Electrochromic Device Using Integrated WO 3@PEO Electrodes for Wearable Devices. BIOSENSORS 2023; 13:194. [PMID: 36831961 PMCID: PMC9953346 DOI: 10.3390/bios13020194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Electrochromic technologies that exhibit low power consumption have been spotlighted recently. In particular, with the recent increase in demand for paper-like panel displays, faster coloration time has been focused on in researching electrochromic devices. Tungsten trioxide (WO3) has been widely used as an electrochromic material that exhibits excellent electrochromic performance with high thermal and mechanical stability. However, in a solid film-type WO3 layer, the coloration time was long due to its limited surface area and long diffusion paths of lithium ions (Li-ions). In this study, we attempted to fabricate a fibrous structure of WO3@poly(ethylene oxide) (PEO) composites through electrospinning. The fibrous and porous layer showed a faster coloration time due to a short Li-ion diffusion path. Additionally, PEO in fibers supports Li-ions being quickly transported into the WO3 particles through their high ionic conductivity. The optimized WO3@PEO fibrous structure showed 61.3 cm2/C of high coloration efficiency, 1.6s fast coloration time, and good cycle stability. Lastly, the electrochromic device was successfully fabricated on fabric using gel electrolytes and a conductive knitted fabric as a substrate and showed a comparable color change through a voltage change from -2.5 V to 1.5 V.
Collapse
Affiliation(s)
- Haneul Kwon
- School of Advanced Material Engineering, Kookmin University, Seoul 02707, Republic of Korea
| | - Soohyun Kim
- School of Advanced Material Engineering, Kookmin University, Seoul 02707, Republic of Korea
- School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Mirim Ham
- School of Advanced Material Engineering, Kookmin University, Seoul 02707, Republic of Korea
| | - Yewon Park
- School of Advanced Material Engineering, Kookmin University, Seoul 02707, Republic of Korea
| | - Haekyoung Kim
- School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Wonmok Lee
- Department of Chemistry, Sejong University, Seoul 05006, Republic of Korea
| | - Hyunjung Lee
- School of Advanced Material Engineering, Kookmin University, Seoul 02707, Republic of Korea
| |
Collapse
|
7
|
Azman MN, Abualroos NJ, Yaacob KA, Zainon R. Feasibility of nanomaterial tungsten carbide as lead-free nanomaterial-based radiation shielding. Radiat Phys Chem Oxf Engl 1993 2023. [DOI: 10.1016/j.radphyschem.2022.110492] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Bhattacharjee S, Sen S, Samanta S, Kundu S. Study on the role of rGO in enhancing the electrochromic performance of WO3 film. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Au BWC, Chan KY. Towards an All-Solid-State Electrochromic Device: A Review of Solid-State Electrolytes and the Way Forward. Polymers (Basel) 2022; 14:polym14122458. [PMID: 35746035 PMCID: PMC9230932 DOI: 10.3390/polym14122458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 12/15/2022] Open
Abstract
In order to curb high electricity usage, especially in commercial buildings, smart windows, also known as “switchable” or “smart” glasses, have attracted a significant amount of attention in an effort to achieve energy savings in eco-friendly buildings and transportation systems. Smart windows save energy by regulating the input of solar heat and light and hence cutting down air-conditioning expenses, while maintaining indoor comfort. This is achieved by electrochromism, which is defined as the reversible colour change in electrochromic (EC) materials from transparent to dark blue and vice versa under a small applied voltage. Recent state-of-the-art electrochromic devices (ECD) adopt liquid-based electrolytes as the main source of energy for basic operations. While this has resulted in much success in ECDs as reported in past studies, there remain several drawbacks to this aspect, such as liquid electrolyte leakage and evaporation, not to mention safety concerns related to the harmful nature of electrolyte materials. This paper aims to review the recent advances in various solid electrolytes that are potential solutions to the mentioned problems.
Collapse
|
10
|
Qu S, Guan J, Cai D, Wang Q, Wang X, Song W, Ji W. An Electrochromic Ag-Decorated WO 3-x Film with Adjustable Defect States for Electrochemical Surface-Enhanced Raman Spectroscopy. NANOMATERIALS 2022; 12:nano12101637. [PMID: 35630860 PMCID: PMC9146956 DOI: 10.3390/nano12101637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 02/01/2023]
Abstract
Electrochemical surface-enhanced Raman scattering (EC-SERS) spectroscopy is an ultrasensitive spectro-electrochemistry technique that provides mechanistic and dynamic information on electrochemical interfaces at the molecular level. However, the plasmon-mediated photocatalysis hinders the intrinsic electrochemical behavior of molecules at electrochemical interfaces. This work aimed to develop a facile method for constructing a reliable EC-SERS substrate that can be used to study the molecular dynamics at electrochemical interfaces. Herein, a novel Ag-WO3-x electrochromic heterostructure was synthesized for EC-SERS. Especially, the use of electrochromic WO3-x film suppresses the influence of hot-electrons-induced catalysis while offering a reliable SERS effect. Based on this finding, the real electrochemical behavior of p-aminothiophenol (PATP) on Ag nanoparticles (NPs) surface was revealed for the first time. We are confident that metal-semiconductor electrochromic heterostructures could be developed into reliable substrates for EC-SERS analysis. Furthermore, the results obtained in this work provide new insights not only into the chemical mechanism of SERS, but also into the hot-electron transfer mechanism in metal-semiconductor heterostructures.
Collapse
Affiliation(s)
- Siqi Qu
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; (S.Q.); (J.G.); (D.C.); (Q.W.)
| | - Jing Guan
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; (S.Q.); (J.G.); (D.C.); (Q.W.)
| | - Dongqi Cai
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; (S.Q.); (J.G.); (D.C.); (Q.W.)
| | - Qianshuo Wang
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; (S.Q.); (J.G.); (D.C.); (Q.W.)
| | - Xiuyun Wang
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; (S.Q.); (J.G.); (D.C.); (Q.W.)
- Correspondence: (X.W.); (W.S.); (W.J.)
| | - Wei Song
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
- Correspondence: (X.W.); (W.S.); (W.J.)
| | - Wei Ji
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; (S.Q.); (J.G.); (D.C.); (Q.W.)
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 145040, China
- Correspondence: (X.W.); (W.S.); (W.J.)
| |
Collapse
|
11
|
Abstract
WO3 nanostructured thin films were grown using spray deposition on FTO coated glass. The effect of the precursor concentration and the solution quantity, which determines the deposition time, on the electrochemical, electrochromic and optical properties of the WO3 films was investigated. The films were found to exhibit a good electrochromic activity with a reasonably good durability of charge exchange and optical modulation under harsh electrochemical cycling in Li-ion-conducting electrolyte. Associated compositional and structural characteristics were probed by several techniques, indicating that the observed improved durability may be due to the unique WO3 thin films’ structuring, the surface of the films consisting of wall-like structures combined with bubble-like islands on a polycrystalline WO3 granular background, that requires further study in greater detail.
Collapse
|
12
|
Li Y, Fang R, Wang D. A Reversible Moisture-Responsive Plasmonic Color-Raman and Transmittance Modulation Device by Dispersing Hyaluronan-Functionalized Ag into Nanofibers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2219-2229. [PMID: 34962377 DOI: 10.1021/acsami.1c18259] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plasmonic physical color generation, which mostly depends on selective absorption, creates unique colors by light transmission and scattering. Based on this, regulating plasmon and transparency with external stimulation is a promising approach for fabricating optical devices with enhanced visual displays; however, few studies have addressed the implementation of dual-optical modulation. In addition, developing a color response to environmental stimuli through the highly shape-sensitive plasmon depth modulation has long remained a significant challenge once the nanostructure is determined. Some stimulations also require high amounts of electricity, which can be costly. In this study, strategically designed hyaluronan-functionalized triangular silver nanoparticles (AgNPs) were embedded in polyvinyl alcohol-polyethylene nanofiber films to achieve a breakthrough in the moisture-responsive dual-optical modulation of the plasmonic color-Raman and transparency. Switchable colors that are reversible were induced in plasmon-resonance-modulation AgNPs via moisture stimulation, adjusting the expansion-tunable dielectric constant of hyaluronan-functionalized AgNPs and varying the electron density due to electron transfer. Furthermore, a moisture gradient was used to decrease the Raman scattering and increase the photoluminescence, which is a significant demonstration of smart-plasmonic evolution. This effect occurred due to the gradual transition from plasmon-driven photoluminescence quenching to photoluminescence enhancement as the interval of the Ag and hyaluronic acid molecules was increased. The transparency of the composite film was also dynamically regulated by turning moisture on/off. This occurred because of the significant difference in hygroscopic expansion between hyaluronan and the nanofibers, which generated a large variation in the total refractive index and caused changes in the surface roughness.
Collapse
Affiliation(s)
- Yingying Li
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Ranran Fang
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Dong Wang
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
13
|
Sheng M, Wang W, Li L, Zhang L, Fu S. All-in-one wearable electronics design: Smart electrochromic liquid-crystal-clad fibers without external electrodes. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Yadav PVK, Ajitha B, Kumar Reddy YA, Sreedhar A. Recent advances in development of nanostructured photodetectors from ultraviolet to infrared region: A review. CHEMOSPHERE 2021; 279:130473. [PMID: 33892456 DOI: 10.1016/j.chemosphere.2021.130473] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/10/2021] [Accepted: 03/30/2021] [Indexed: 05/25/2023]
Abstract
Herein, we aim to evaluate the photodetector performance of various nanostructured materials (thin films, 2-D nanolayers, 1-D nanowires, and 0-D quantum dots) in ultraviolet (UV), visible, and infrared (IR) regions. Specifically, semiconductor-based metal oxides such as ZnO, Ga2O3, SnO2, TiO2, and WO3 are the majority preferred materials for UV photodetection due to their broad band gap, stability, and relatively simple fabrication processes. Whereas, the graphene-based hetero- and nano-structured composites are considered as prominent visible light active photodetectors. Interestingly, graphene exhibits broad band spectral absorption and ultra-high mobility, which derives graphene as a suitable candidate for visible detector. Further, due to the very low absorption rate of graphene (2%), various materials have been integrated with graphene (rGO-CZS, PQD-rGO, N-SLG, and GO doped PbI2). In the case of IR photodetectors, quantum dot IR detectors prevails significant advantage over the quantum well IR detectors due to the 0-D quantum confinement and ability to absorb the light with any polarization. In such a way, we discussed the most recent developments on IR detectors using InAs and PbS quantum dot nanostructures. Overall, this review gives clear view on the development of suitable device architecture under prominent nanostructures to tune the photodetector performance from UV to IR spectral regions for wide-band photodetectors.
Collapse
Affiliation(s)
- P V Karthik Yadav
- Department of Physics, Indian Institute of Information Technology, Design and Manufacturing, Kancheepuram, Off Vandalur-Kelambakkam Road, Chennai, 600127, India
| | - B Ajitha
- Division of Physics, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vandalur - Kelambakkam Road, Chennai, 600127, India
| | - Y Ashok Kumar Reddy
- Department of Physics, Indian Institute of Information Technology, Design and Manufacturing, Kancheepuram, Off Vandalur-Kelambakkam Road, Chennai, 600127, India.
| | - Adem Sreedhar
- Department of Physics, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 461701, Republic of Korea.
| |
Collapse
|
15
|
Chabalala MB, Gumbi NN, Mamba BB, Al-Abri MZ, Nxumalo EN. Photocatalytic Nanofiber Membranes for the Degradation of Micropollutants and Their Antimicrobial Activity: Recent Advances and Future Prospects. MEMBRANES 2021; 11:membranes11090678. [PMID: 34564496 PMCID: PMC8467043 DOI: 10.3390/membranes11090678] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 12/04/2022]
Abstract
This review paper systematically evaluates current progress on the development and performance of photocatalytic nanofiber membranes often used in the removal of micropollutants from water systems. It is demonstrated that nanofiber membranes serve as excellent support materials for photocatalytic nanoparticles, leading to nanofiber membranes with enhanced optical properties, as well as improved recovery, recyclability, and reusability. The tremendous performance of photocatalytic membranes is attributed to the photogenerated reactive oxygen species such as hydroxyl radicals, singlet oxygen, and superoxide anion radicals introduced by catalytic nanoparticles such as TiO2 and ZnO upon light irradiation. Hydroxyl radicals are the most reactive species responsible for most of the photodegradation processes of these unwanted pollutants. The review also demonstrates that self-cleaning and antimicrobial nanofiber membranes are useful in the removal of microbial species in water. These unique materials are also applicable in other fields such as wound dressing since the membrane allows for oxygen flow in wounds to heal while antimicrobial agents protect wounds against infections. It is demonstrated that antimicrobial activities against bacteria and photocatalytic degradation of micropollutants significantly reduce membrane fouling. Therefore, the review demonstrates that electrospun photocatalytic nanofiber membranes with antimicrobial activity form efficient cost-effective multifunctional composite materials for the removal of unwanted species in water and for use in various other applications such as filtration, adsorption and electrocatalysis.
Collapse
Affiliation(s)
- Mandla B. Chabalala
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Roodepoort 1709, South Africa; (M.B.C.); (N.N.G.); (B.B.M.)
| | - Nozipho N. Gumbi
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Roodepoort 1709, South Africa; (M.B.C.); (N.N.G.); (B.B.M.)
| | - Bhekie B. Mamba
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Roodepoort 1709, South Africa; (M.B.C.); (N.N.G.); (B.B.M.)
- State Key Laboratory of Separation Membranes and Membrane Processes, National Centre for International Joint Research on Membrane Science and Technology, Tianjin 300387, China
- School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Mohammed Z. Al-Abri
- Nanotechnology Research Centre, Sultan Qaboos University, P.O. Box 17, Al-Khoudh 123, Oman;
- Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khoudh 123, Oman
| | - Edward N. Nxumalo
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Roodepoort 1709, South Africa; (M.B.C.); (N.N.G.); (B.B.M.)
- Correspondence: ; Tel.: +27-11-670-9498
| |
Collapse
|
16
|
Han W, Shi Q, Hu R. Advances in Electrochemical Energy Devices Constructed with Tungsten Oxide-Based Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:692. [PMID: 33802013 PMCID: PMC8000231 DOI: 10.3390/nano11030692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/28/2021] [Accepted: 03/04/2021] [Indexed: 01/09/2023]
Abstract
Tungsten oxide-based materials have drawn huge attention for their versatile uses to construct various energy storage devices. Particularly, their electrochromic devices and optically-changing devices are intensively studied in terms of energy-saving. Furthermore, based on close connections in the forms of device structure and working mechanisms between these two main applications, bifunctional devices of tungsten oxide-based materials with energy storage and optical change came into our view, and when solar cells are integrated, multifunctional devices are accessible. In this article, we have reviewed the latest developments of tungsten oxide-based nanostructured materials in various kinds of applications, and our focus falls on their energy-related uses, especially supercapacitors, lithium ion batteries, electrochromic devices, and their bifunctional and multifunctional devices. Additionally, other applications such as photochromic devices, sensors, and photocatalysts of tungsten oxide-based materials have also been mentioned. We hope this article can shed light on the related applications of tungsten oxide-based materials and inspire new possibilities for further uses.
Collapse
Affiliation(s)
- Wenfang Han
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China;
- The Key Lab of Guangdong for Modern Surface Engineering Technology, National Engineering Laboratory for Modern Materials Surface Engineering Technology, Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510651, China
| | - Qian Shi
- The Key Lab of Guangdong for Modern Surface Engineering Technology, National Engineering Laboratory for Modern Materials Surface Engineering Technology, Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510651, China
| | - Renzong Hu
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China;
| |
Collapse
|
17
|
Nhon L, Wilkins R, Reynolds JR, Tomlinson A. Guiding synthetic targets of anodically coloring electrochromes through density functional theory. J Chem Phys 2021; 154:054110. [PMID: 33557540 DOI: 10.1063/5.0039511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Electrochromic devices offer many technological applications, including flexible displays, dimmable mirrors, and energy-efficient windows. Additionally, adsorbing electrochromic molecular assemblies onto mesoporous metal-oxide surfaces facilitates commercial and manufacturing potential (i.e., screen-printing and/or roll-to-roll processing). These systems also demonstrate synthetic versatility, thus making a wide array of colors accessible. In this work, using Time-Dependent Density Functional Theory (TD-DFT), we investigated ten different bi-aryl type molecules of 3,4-ethylendioxythiophene (EDOT) conjugated to various phenyl derivatives as potential anodically coloring electrochromes (ACEs). The non-substituted phenylene, hexylthiol-EDOT-phenyl-phosphonic acid, PA1, was synthesized and characterized as a means of model validity. PA1 absorbs in the UV region in its neutral state and upon oxidation absorbs within the visible, hence showcasing its potential as an ACE chromophore. The properties of PA1 inspired the designs of the other nine structural derivatives where the number and position of methoxy groups on the phenylene were varied. Using our DFT treatment, we assessed the impact of these modifications on the electronic structures, geometries, and excited-state properties. In particular, we examined stabilization intermolecular interactions (S-O and O-H) as they aid in molecule planarization, thus facilitating charge transport properties in devices. Additionally, destabilizing O-O forces were observed, thereby making some chromophores less desirable. A detailed excited state analysis was performed, which linked the simulated UV-Vis spectra to the dominant excited state transitions and their corresponding molecular orbitals. Based on these results, the nine chromophores were ranked ergo providing an ordered list of synthetic targets.
Collapse
Affiliation(s)
- Linda Nhon
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Riley Wilkins
- Department of Chemistry & Biochemistry, University of North Georgia, Dahlonega, Georgia 30597, USA
| | - John R Reynolds
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Aimée Tomlinson
- Department of Chemistry & Biochemistry, University of North Georgia, Dahlonega, Georgia 30597, USA
| |
Collapse
|
18
|
Wu W, Fang H, Ma H, Wu L, Zhang W, Wang H. Boosting Transport Kinetics of Ions and Electrons Simultaneously by Ti 3C 2T x (MXene) Addition for Enhanced Electrochromic Performance. NANO-MICRO LETTERS 2020; 13:20. [PMID: 34138188 PMCID: PMC8187520 DOI: 10.1007/s40820-020-00544-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/30/2020] [Indexed: 06/12/2023]
Abstract
Electrochromic technology plays a significant role in energy conservation, while its performance is greatly limited by the transport behavior of ions and electrons. Hence, an electrochromic system with overall excellent performances still need to be explored. Initially motivated by the high ionic and electronic conductivity of transition metal carbide or nitride (MXene), we design a feasible procedure to synthesize the MXene/WO3-x composite electrochromic film. The consequently boosted electrochromic performances prove that the addition of MXene is an effective strategy for simultaneously enhancing electrons and ions transport behavior in electrochromic layer. The MXene/WO3-x electrochromic device exhibits enhanced transmittance modulation and coloration efficiency (60.4%, 69.1 cm2 C-1), higher diffusion coefficient of Li+ and excellent cycling stability (200 cycles) over the pure WO3-x device. Meanwhile, numerical stimulation theoretically explores the mechanism and kinetics of the lithium ion diffusion, and proves the spatial and time distributions of higher Li+ concentration in MXene/WO3-x composite electrochromic layer. Both experiments and theoretical data reveal that the addition of MXene is effective to promote the transport kinetics of ions and electrons simultaneously and thus realizing a high-performance electrochromic device. This work opens new avenues for electrochromic materials design and deepens the study of kinetics mechanism of ion diffusion in electrochromic devices.
Collapse
Affiliation(s)
- Wenting Wu
- State Key Laboratory for Mechanical Behavior of Materials, School of Material Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Huajing Fang
- State Key Laboratory for Mechanical Behavior of Materials, School of Material Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| | - Hailong Ma
- State Key Laboratory for Mechanical Behavior of Materials, School of Material Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Liangliang Wu
- School of Electronic and Information Engineering and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Wenqing Zhang
- Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Hong Wang
- School of Electronic and Information Engineering and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China.
- Shenzhen Engineering Research Center for Novel Electronic Information Materials and Devices, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
19
|
Lee Y, Yun J, Seo M, Kim SJ, Oh J, Kang CM, Sun HJ, Chung TD, Lee B. Full-Color-Tunable Nanophotonic Device Using Electrochromic Tungsten Trioxide Thin Film. NANO LETTERS 2020; 20:6084-6090. [PMID: 32603122 DOI: 10.1021/acs.nanolett.0c02097] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Color generation based on strategically designed plasmonic nanostructures is a promising approach for display applications with unprecedented high-resolution. However, it is disadvantageous in that the optical response is fixed once the structure is determined. Therefore, obtaining high modulation depth with reversible optical properties while maintaining its fixed nanostructure is a great challenge in nanophotonics. In this work, dynamic color tuning and switching using tungsten trioxide (WO3), a representative electrochromic material, are demonstrated with reflection-type and transmission-type optical devices. Thin WO3 films incorporated in simple stacked configurations undergo dynamic color change by the adjustment of their dielectric constant through the electrochromic principle. A large resonance wavelength shift up to 107 nm under an electrochemical bias of 3.2 V could be achieved by the reflection-type device. For the transmission-type device, on/off switchable color pixels with improved purity are demonstrated of which transmittance is modulated by up to 4.04:1.
Collapse
Affiliation(s)
- Yohan Lee
- Inter-University Semiconductor Research Center and School of Electrical and Computer Engineering, Seoul National University, Seoul 08826, South Korea
| | - Jeongse Yun
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Minjee Seo
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Sun-Je Kim
- Inter-University Semiconductor Research Center and School of Electrical and Computer Engineering, Seoul National University, Seoul 08826, South Korea
| | - Jaehyun Oh
- Department of Material Science and Engineering, Kunsan National University, Kunsan 54151, South Korea
| | - Chung Mu Kang
- Advanced Institute of Convergence Technology, Suwon 16229, South Korea
| | - Ho-Jung Sun
- Department of Material Science and Engineering, Kunsan National University, Kunsan 54151, South Korea
| | - Taek Dong Chung
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Advanced Institute of Convergence Technology, Suwon 16229, South Korea
| | - Byoungho Lee
- Inter-University Semiconductor Research Center and School of Electrical and Computer Engineering, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
20
|
Farid S, Hsu B, Stan L, Stroscio M, Dutta M. Optimized oxygen deprived low temperature sputtered WO 3 thin films for crystalline structures. NANOTECHNOLOGY 2020; 31:095706. [PMID: 31711046 DOI: 10.1088/1361-6528/ab560f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report a detailed analysis on the effects of processing parameters for sputtered tungsten trioxide (WO3) thin nanoscale films on their structural, vibrational and electrical properties. The research aims to understand the fundamental aspects of WO3 sputtering at relatively low temperatures and in an oxygen deprived environment targeting applications of temperature and oxygen sensitive substrates. Structural analysis indicates that films deposited at room temperature, or substrate temperatures at or below 400 °C with low oxygen partial pressure are amorphous. Crystallization of the films was observed with distinct Raman peaks when the films were annealed at 300 °C or above using rapid thermal annealing for 10 min. Films revealed monoclinic phases of WO3 with the presence of W-O-W stretching, bending and lattice vibrational modes in the Raman spectra. Interestingly, a change of transport behavior from insulating to semiconducting was observed for as deposited films on post annealing. Annealed films revealed stoichiometric WO3 phases with no external defects detected. The present study adopts a route to intercalate WO3 in a variety of applications from electrochromic coloration to a nanocrystalline thin film for electronic devices sensitive to higher temperatures and gas flow in the sputtering system.
Collapse
Affiliation(s)
- Sidra Farid
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States of America
| | | | | | | | | |
Collapse
|
21
|
Study of the Thermal Annealing on Structural and Morphological Properties of High-Porosity A-WO 3 Films Synthesized by HFCVD. NANOMATERIALS 2019; 9:nano9091298. [PMID: 31514340 PMCID: PMC6781267 DOI: 10.3390/nano9091298] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/31/2019] [Accepted: 09/04/2019] [Indexed: 11/17/2022]
Abstract
High-porosity nanostructured amorphous tungsten OXIDE (a-WO3) films were synthesized by a Hot Filament Chemical Vapor Deposition technique (HFCVD) and then transformed into a crystalline WO3 by simple thermal annealing. The a-WO3 films were annealed at 100, 300, and 500 °C for 10 min in an air environment. The films were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), micro-Raman spectroscopy, high-resolution transmission electron microscopy (HR-TEM), and UV–vis spectroscopy. Results revealed that the a-WO3 films were highly porous, composed of cauliflower-like structures made of nanoparticles with average sizes of 12 nm. It was shown that the effect of annealing on the morphology of the a-WO3 films leads to a sintering process. However, the morphology is conserved. It was found that at annealing temperatures of 100 °C, the a-WO3 films are of an amorphous nature, while at 300 °C, the films crystallize in the monoclinic phase of WO3. The calculated bandgap for the a-WO3 was 3.09 eV, and 2.53 eV for the film annealed at 500 °C. Finally, the results show that porous WO3 films preserve the morphology and maintain the porosity, even after the annealing at 500 °C.
Collapse
|
22
|
Celiesiute R, Ramanaviciene A, Gicevicius M, Ramanavicius A. Electrochromic Sensors Based on Conducting Polymers, Metal Oxides, and Coordination Complexes. Crit Rev Anal Chem 2018; 49:195-208. [PMID: 30285474 DOI: 10.1080/10408347.2018.1499009] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Electrochromic sensors offer multi-mode registration of analytical signal based on combination of electrochemical and optical techniques. This emerging direction of analytical chemistry is relatively new; therefore, it has very high potential for various applications in chemical and biochemical analysis. Properties of sensors based on various electrochromic materials such as polymers, polymer derivatives, polymer composites, metal oxides, metal oxide complexes, phthalocyanines, porphyrins, and dyes are critically overviewed, evaluated, and compared. The most promising directions in analytical application of electrochromic polymers are highlighted.
Collapse
Affiliation(s)
- Raimonda Celiesiute
- a NanoTechnas - Centre of Nanotechnology and Material Science, Faculty of Chemistry and Geosciences , Vilnius University , Vilnius , LT , Lithuania.,b State Research Institute Center for Physical Sciences and Technology , Laboratory of Bioelectrochemistry , Vilnius , LT , Lithuania
| | - Almira Ramanaviciene
- a NanoTechnas - Centre of Nanotechnology and Material Science, Faculty of Chemistry and Geosciences , Vilnius University , Vilnius , LT , Lithuania
| | - Mindaugas Gicevicius
- a NanoTechnas - Centre of Nanotechnology and Material Science, Faculty of Chemistry and Geosciences , Vilnius University , Vilnius , LT , Lithuania.,c Department of Physical Chemistry, Faculty of Chemistry and Geosciences , Vilnius University , Vilnius , LT , Lithuania
| | - Arunas Ramanavicius
- a NanoTechnas - Centre of Nanotechnology and Material Science, Faculty of Chemistry and Geosciences , Vilnius University , Vilnius , LT , Lithuania.,c Department of Physical Chemistry, Faculty of Chemistry and Geosciences , Vilnius University , Vilnius , LT , Lithuania.,d State Research Institute Center for Physical Sciences and Technology , Laboratory of Nanotechnology , Vilnius , LT , Lithuania
| |
Collapse
|
23
|
Najafi-Ashtiani H, Gholipour S, Rahdar A. Surface plasmon resonance effect for a new structure of Ag/WO 3 nanorod-shell nanocomposits and application in smart window. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.05.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
24
|
Ausekar MV, Mawale RM, Pazdera P, Havel J. Matrix Assisted and/or Laser Desorption Ionization Quadrupole Ion Trap Time-of-Flight Mass Spectrometry of WO 3 Clusters Formation in Gas Phase. Nanodiamonds, Fullerene, and Graphene Oxide Matrices. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:581-587. [PMID: 29340959 DOI: 10.1007/s13361-017-1874-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 06/07/2023]
Abstract
The formation of W x O y+●/-● clusters in the gas phase was studied by laser desorption ionization (LDI) and matrix assisted laser desorption ionization (MALDI) of solid WO3. LDI produced (WO3) n+ ●/- ● (n = 1-7) clusters. In MALDI, when using nano-diamonds (NDs), graphene oxide (GO), or fullerene (C60) matrices, higher mass clusters were generated. In addition to (WO3) n-● clusters, oxygen-rich or -deficient species were found in both LDI and MALDI (with the total number of clusters exceeding one hundred ≈ 137). This is the first time that such matrices have been used for the generation of(WO3) n+●/-● clusters in the gas phase, while new high mass clusters (WO3) n-● (n = 12-19) were also detected. Graphical Abstract.
Collapse
Affiliation(s)
- Mayuri Vilas Ausekar
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5/A14, 625 00, Brno, Czech Republic
| | - Ravi Madhukar Mawale
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5/A14, 625 00, Brno, Czech Republic
| | - Pavel Pazdera
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5/A14, 625 00, Brno, Czech Republic
- Center for Syntheses at Sustainable Conditions and Their Management, Faculty of Science, Department of Chemistry, Masaryk University, Kamenice 5/A14, 625 00, Brno, Czech Republic
| | - Josef Havel
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5/A14, 625 00, Brno, Czech Republic.
| |
Collapse
|
25
|
Mendieta-Reyes NE, Díaz-García AK, Gómez R. Simultaneous Electrocatalytic CO2 Reduction and Enhanced Electrochromic Effect at WO3 Nanostructured Electrodes in Acetonitrile. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03047] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Néstor E. Mendieta-Reyes
- Departamento
de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Cra 30 # 45-03, Edificio 451, Bogotá 11001, Colombia
- Institut
Universitari d’Electroquímica i Departament de Química
Física, Universitat d’Alacant, Apartat 99, E-03080 Alicante, Spain
| | - Ana Korina Díaz-García
- Institut
Universitari d’Electroquímica i Departament de Química
Física, Universitat d’Alacant, Apartat 99, E-03080 Alicante, Spain
| | - Roberto Gómez
- Institut
Universitari d’Electroquímica i Departament de Química
Física, Universitat d’Alacant, Apartat 99, E-03080 Alicante, Spain
| |
Collapse
|
26
|
Yudar HH, Pat S, Korkmaz Ş, Özen S, Pat Z. Optical, surface, and microstructural properties of Li4Ti5O12 thin films coated by RF magnetron sputtering. PARTICULATE SCIENCE AND TECHNOLOGY 2017. [DOI: 10.1080/02726351.2017.1340378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- H. Hakan Yudar
- Physics Department, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Suat Pat
- Physics Department, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Şadan Korkmaz
- Physics Department, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Soner Özen
- Physics Department, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Zerrin Pat
- Chemistry Department, Bilecik Seyh Edebali University, Bilecik, Turkey
| |
Collapse
|