1
|
Removal of Pb 2+, CrT, and Hg 2+ Ions from Aqueous Solutions Using Amino-Functionalized Magnetic Nanoparticles. Int J Mol Sci 2022; 23:ijms232416186. [PMID: 36555824 PMCID: PMC9780833 DOI: 10.3390/ijms232416186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/21/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
In this paper, a circular economy approach with the adsorption and desorption of heavy metal (HM) ions—i.e., lead (Pb2+), chromium (CrT), and mercury (Hg2+)—from aqueous solutions was studied. Specific and selective binding of HM ions was performed on stabilized and amino-functionalized iron oxide magnetic nanoparticles (γ-Fe2O3@NH2 NPs) from an aqueous solution at pH 4 and 7. For this purpose, γ-Fe2O3@NH2 NPs were characterized by thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR), specific surface area (BET), transmission electron microscopy (TEM), EDXS, and zeta potential measurements (ζ). The effects of different adsorbent amounts (mads = 20/45/90 mg) and the type of anions (NO3−, Cl−, SO42−) on adsorption efficiency were also tested. The desorption was performed with 0.1 M HNO3. The results showed improvement of adsorption efficiency for CrT, Pb2+, and Hg2+ ions at pH 7 by 45 mg of g-Fe2O3@NH2 NPs, and the sequence was as follows: CrT > Hg2+ > Pb2+, with adsorption capacities of 90.4 mg/g, 85.6 mg/g, and 83.6 mg/g, respectively. The desorption results showed the possibility for the reuse of γ-Fe2O3@NH2 NPs with HNO3, as the desorption efficiency was 100% for Hg2+ ions, 96.7% for CrT, and 91.3% for Pb2+.
Collapse
|
2
|
Mahesh N, Balakumar S, Shyamalagowri S, Manjunathan J, Pavithra MKS, Babu PS, Kamaraj M, Govarthanan M. Carbon-based adsorbents as proficient tools for the removal of heavy metals from aqueous solution: A state of art-review emphasizing recent progress and prospects. ENVIRONMENTAL RESEARCH 2022; 213:113723. [PMID: 35752329 DOI: 10.1016/j.envres.2022.113723] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/13/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Carbon-centric adsorbents (CCA) are diverse forms, from simple biochar (BC) to graphene derivatives, carbon nanotubes (CNTs), and activated carbon (AC), which have been vastly explored for their removal of a plethora of pollutants, including heavy metals (HM). The prominent features of CCA are their operational attributes like extensive surface area, the occurrence of flexible surface functional groups, etc. This work offers a comprehensive examination of contemporary research on CCA for their superior metal removal aptitude and performances in simulated solutions and wastewater flows; via portraying the recent research advances as an outlook on the appliances of CACs for heavy metal adsorption for removal via distinct forms like AC, BC, Graphene oxide (GO), and CNTs. The bibliometric analysis tool was employed to highlight the number of documents, country-wise contribution, and co-occurrence mapping based on the Scopus database. The coverage of research works in this review is limited to the last 5 years (2017-2021) to highlight recent progress and prospects in using CCAs such as AC, BC, GO, and CNTs to remove HM from aqueous media, which makes the review unique. Besides an overview of the common mechanisms of CACs, the future scope of CAC, especially towards HM mitigation, is also discussed in this review. This review endorses that further efforts should be commenced to enhance the repertory of CCAs that effectively eliminate multiple targeted metals in both simulated and real wastewater.
Collapse
Affiliation(s)
- Narayanan Mahesh
- Department of Chemistry and Biosciences, Srinivasa Ramanujan Centre, SASTRA Deemed to Be University, Kumbakonam, 612001, Tamil Nadu, India
| | - Srinivasan Balakumar
- Department of Chemistry and Biosciences, Srinivasa Ramanujan Centre, SASTRA Deemed to Be University, Kumbakonam, 612001, Tamil Nadu, India
| | | | - Jagadeesan Manjunathan
- Department of Biotechnology, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Chennai, 600117, Tamil Nadu, India
| | - M K S Pavithra
- Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, 638401, Tamil Nadu, India
| | - Palanisamy Suresh Babu
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai, 602105, Tamil Nadu, India; Faculty of Pharmaceutical Sciences, UCSI University, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Murugesan Kamaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology -Ramapuram Campus, Chennai, 600089, Tamil Nadu, India.
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
3
|
Frescura LM, de Menezes BB, Lütke SF, Funari Junior RA, Dotto GL, da Rosa MB. Reviewing variables and their implications affecting adsorption of Cr(VI) onto activated carbon: an in-depth statistical case study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:49832-49849. [PMID: 35218491 DOI: 10.1007/s11356-022-19169-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Removal of Cr(VI) from the aqueous phase using numerous activated carbons (AC) has been broadly studied in the last decades. Nevertheless, the diversity of activation methods, AC properties, and adsorption conditions precludes the standardization of specific characteristics required to achieve better adsorption results. This work reviewed the pertinent literature on Cr(VI) adsorption onto AC published over the past four decades. Pearson's correlation matrix and principal component analysis (PCA) assisted in identifying the parameters and AC characteristics that have the greatest influence on the maximum adsorption capacity (qm). Two hundred thirty-six adsorption assays were found reporting data on 110 ACs and different parameters. Of these, 39.8% of the studies contemplated the variables qm, pH, temperature (T), surface area (SBET), micropore volume (Vmicro), and mesopore volume (Vmeso), and only 19.5% reported the point of zero charge (pHPZC). Statistical analysis disclosed that SBET and Vmicro have a strong positive correlation with qm, while Vmeso, T, and pH show little or no correlation. The difference between pH and pHPZC (PZCdiff) indicated a significant anticorrelation with qm, thus evidencing that lower PZCdiff values enhance adsorption. The findings are useful for all researchers that work with Cr(VI) adsorption on AC since they provide a start point concerning the required adsorbent characteristics and process conditions to be employed.
Collapse
Affiliation(s)
- Lucas Mironuk Frescura
- Department of Chemistry, Universidade Federal de Santa Maria - UFSM, Av. Roraima, 1000, Santa Maria, RS, 97105-900, Brazil
| | - Bryan Brummelhaus de Menezes
- Department of Chemistry, Universidade Federal de Santa Maria - UFSM, Av. Roraima, 1000, Santa Maria, RS, 97105-900, Brazil
| | - Sabrina Frantz Lütke
- Department of Chemistry, Universidade Federal de Santa Maria - UFSM, Av. Roraima, 1000, Santa Maria, RS, 97105-900, Brazil
| | - Ronaldo Antunes Funari Junior
- Department of Chemistry, Universidade Federal de Santa Maria - UFSM, Av. Roraima, 1000, Santa Maria, RS, 97105-900, Brazil
| | - Guilherme Luiz Dotto
- Department of Chemical Engineering, Universidade Federal de Santa Maria - UFSM, Av. Roraima, 1000, Santa Maria, RS, 97105-900, Brazil
| | - Marcelo Barcellos da Rosa
- Department of Chemistry, Universidade Federal de Santa Maria - UFSM, Av. Roraima, 1000, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
4
|
Bhatt S, Vyas G, Paul P. Solvent Assisted Synthesis of Nitrogen and Sulfur Doped Blue and Yellow Emissive Carbon Dots and Their Applications as a Selective Cr(VI) Sensor and Patterning Agent. ChemistrySelect 2022. [DOI: 10.1002/slct.202200242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Shreya Bhatt
- Analytical and Environmental Science Division & Centralized Instrument Facility CSIR-Central Salt and Marine Chemicals Research Institute G. B. Marg Bhavnagar 364002 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Gaurav Vyas
- Analytical and Environmental Science Division & Centralized Instrument Facility CSIR-Central Salt and Marine Chemicals Research Institute G. B. Marg Bhavnagar 364002 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Parimal Paul
- Analytical and Environmental Science Division & Centralized Instrument Facility CSIR-Central Salt and Marine Chemicals Research Institute G. B. Marg Bhavnagar 364002 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
5
|
Chen YC, Tseng CH, Chen YT. Modeling transmission of hexavalent chromium concentration and its health cost with a water quality analysis simulation program. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1779-1788. [PMID: 33829623 DOI: 10.1002/wer.1569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/22/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
In this study, the Water Quality Analysis Simulation Program (WASP7) was used to evaluate the transmission of hexavalent chromium (Cr(VI)) contamination in a water-sediment system and its flux into cultivated soils. The agricultural areas adjacent to the Wu River in Taiwan were taken as the study area, as these soils were heavily polluted with Cr(VI) concentrations of 2173-3271 μg/kg. The rates of accumulation of Cr(VI) are affected by the distance from the source of contamination and the size and type of cultivated areas. The highest concentrations of Cr(VI) (4.27 mg/kg) were detected in soil from Changhua city and correlated with the greater risk of gastric cancer in residents. Specifically, the risk of gastric cancer due to Cr(VI) contamination of agricultural soil was 3 × 10 - 7 - 15.2 × 10 - 6 in Taichung city (upstream) and 1.3 × 10 - 6 - 76.3 × 10 - 6 in Changhua county (downstream). The values of statistical life-years (VSLYs) were US$6.2-10 million for rice, US$42-60 million for corn, and US$360-580 million for other vegetables, respectively, each year. It is critical that techniques other than source reduction are used to reduce human exposure to Cr(VI), such as chemical oxidation or ion-exchange treatment to remove Cr(VI) from factory wastewaters, prior to their discharge into rivers. PRACTITIONER POINTS: This study evaluated the transmission of hexavalent chromium (Cr(VI)) contamination in a water-sediment-soil system. Maximum concentrations of Cr(VI) most rapidly accumulated in the smallest cultivated areas. The highest concentrations of Cr(VI) (3.3 mg/kg) were correlated with the greater risk of gastric cancer. Young children had a threefold greater risk of gastric cancer than adults. Techniques other than source reduction are prior to their discharge into rivers.
Collapse
Affiliation(s)
- Ying-Chu Chen
- Department of Civil Engineering, National Taipei University of Technology, Taipei City, Taiwan
| | - Chao-Heng Tseng
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei City, Taiwan
| | - Yun-Ting Chen
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei City, Taiwan
| |
Collapse
|