1
|
Hassaan MA, Meky AI, Fetouh HA, Ismail AM, El Nemr A. Central composite design and mechanism of antibiotic ciprofloxacin photodegradation under visible light by green hydrothermal synthesized cobalt-doped zinc oxide nanoparticles. Sci Rep 2024; 14:9144. [PMID: 38644378 DOI: 10.1038/s41598-024-58961-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/05/2024] [Indexed: 04/23/2024] Open
Abstract
In this research, different Co2+ doped ZnO nanoparticles (NPs) were hydrothermally synthesized by an environmentally friendly, sustainable technique using the extract of P. capillacea for the first time. Co-ZnO was characterized and confirmed by FTIR, XPS, XRD, BET, EDX, SEM, TEM, DRS UV-Vis spectroscopy, and TGA analyses. Dislocation density, micro strains, lattice parameters and volume of the unit cell were measured using XRD results. XRD suggests that the average size of these NPs was between 44.49 and 65.69 nm with a hexagonal wurtzite structure. Tauc plot displayed that the optical energy bandgap of ZnO NPs (3.18) slowly declines with Co doping (2.96 eV). Near complete removal of the ciprofloxacin (CIPF) antibiotic was attained using Green 5% of Hy-Co-ZnO in the existence of visible LED light which exhibited maximum degradation efficiency (99%) within 120 min for 30 ppm CIPF initial concentration. The photodegradation mechanism of CIPF using Green Hy-Co-ZnO NPs followed the Pseudo-first-order kinetics. The Green Hy-Co-ZnO NPs improved photocatalytic performance toward CIPF for 3 cycles. The experiments were designed using the RSM (CCD) method for selected parameters such as catalyst dosage, antibiotic dosage, shaking speed, and pH. The maximal CIPF degradation efficiency (96.4%) was achieved under optimum conditions of 39.45 ppm CIPF dosage, 60.56 mg catalyst dosage, 177.33 rpm shaking speed and pH 7.57.
Collapse
Affiliation(s)
- Mohamed A Hassaan
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt
| | - Asmaa I Meky
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
- Alexandria Higher Institute of Engineering and Technology, Alexandria, 21311, Egypt
| | - Howida A Fetouh
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Amel M Ismail
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ahmed El Nemr
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt.
| |
Collapse
|
2
|
Fernandes C, Jesudoss M N, Nizam A, Krishna SBN, Lakshmaiah VV. Biogenic Synthesis of Zinc Oxide Nanoparticles Mediated by the Extract of Terminalia catappa Fruit Pericarp and Its Multifaceted Applications. ACS OMEGA 2023; 8:39315-39328. [PMID: 37901498 PMCID: PMC10601049 DOI: 10.1021/acsomega.3c04857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023]
Abstract
Zinc oxide nanoparticles (ZnO-NPs) were biosynthesized by using the pericarp aqueous extract from Terminalia catappa Linn. These NPs were characterized using various analytical techniques such as X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, ultraviolet (UV) spectroscopy, dynamic light scattering (DLS), and scanning electron microscopy (SEM), and XRD studies of the nanoparticles reported mean size as 12.58 nm nanocrystals with highest purity. Further SEM analysis emphasized the nanoparticles to be spherical in shape. The functional groups responsible for capping and stabilizing the NPs were identified with FTIR studies. DLS studies of the synthesized NPs reported ζ potential as -10.1 mV and exhibited stable colloidal solution. These characterized ZnO-NPs were evaluated for various biological applications such as antibacterial, antifungal, antioxidant, genotoxic, biocompatibility, and larvicidal studies. To explore its multidimensional application in the field of medicine. NPs reported a potential antimicrobial activity at a concentration of 200 μg/mL against bacterial strains in the decreasing order of Streptococcus pyogenes > Streptococcus aureus > Streptococcus typhi > Streptococcus aeruginosa and against the fungi Candida albicans. In vitro studies of RBC hemolysis with varying concentrations of NPs confirm their biocompatibility with IC50 value of 211.4 μg/mL. The synthesized NPs' DPPH free radical scavenging activity was examined to extend their antioxidant applications. The antiproliferation and genetic toxicity were studied with meristematic cells of Allium cepa reported with mitotic index (MI index) of 1.2% at the concentration of 1000 μg/mL. NPs exhibited excellent Larvicidal activity against Culex quinquefasciatus larvae with the highest mortality rate as 98% at 4 mg/L. Our findings elicit the therapeutic potentials of the synthesized zinc oxide NPs.
Collapse
Affiliation(s)
- Cannon
Antony Fernandes
- Department
of Life Sciences. CHRIST (Deemed to be University), Hosur Road, Bangalore, Karnataka 560029, India
| | - Nameeta Jesudoss M
- Department
of Life Sciences. CHRIST (Deemed to be University), Hosur Road, Bangalore, Karnataka 560029, India
| | - Aatika Nizam
- Department
of Chemistry. CHRIST (Deemed to be University), Hosur Road, Bangalore, Karnataka 560029, India
| | - Suresh Babu Naidu Krishna
- Department
of Biomedical and Clinical Technology. Durban
University of Technology, Durban 4000, South Africa
| | | |
Collapse
|
3
|
Das S, Sanjay M, Singh Gautam AR, Behera R, Tiwary CS, Chowdhury S. Low bandgap high entropy alloy for visible light-assisted photocatalytic degradation of pharmaceutically active compounds: Performance assessment and mechanistic insights. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118081. [PMID: 37182480 DOI: 10.1016/j.jenvman.2023.118081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/23/2023] [Accepted: 05/01/2023] [Indexed: 05/16/2023]
Abstract
The incessant accumulation of pharmaceutically active compounds (PhACs) in various environmental compartments represents a global menace. Herein, an equimolar high entropy alloy (HEA), i.e., FeCoNiCuZn, is synthesized via a facile and scalable method, and its effectiveness in eliminating four different PhACs from aqueous matrices is rigorously examined. Attributing to its relatively low bandgap and multielement active sites, the as-synthesized quinary HEA demonstrates more pronounced photocatalytic decomposition efficiency, towards tetracycline (86%), sulfamethoxazole (94%), ibuprofen (80%), and diclofenac (99%), than conventional semiconductor-based photocatalysts, under visible light irradiation. Additionally, radical trapping assays are conducted, and the dissociation intermediates are identified, to probe the plausible photocatalytic degradation pathways. Further, the end-products of FeCoNiCuZn-mediated photocatalysis are apparently non-toxic, and the HEA can be successfully recycled repeatedly, with no obvious leaching of heavy metal ions. Overall, the findings of this study testify the applicability of FeCoNiCuZn as a visible light-active photocatalyst, for treating wastewaters contaminated with PhACs.
Collapse
Affiliation(s)
- Shubhasikha Das
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - M Sanjay
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Abhay Raj Singh Gautam
- Department of Materials Engineering, Indian Institute of Technology Gandhinagar, Gujarat, 382055, India
| | - Rakesh Behera
- Department of Materials Engineering, Indian Institute of Technology Gandhinagar, Gujarat, 382055, India
| | - Chandra Sekhar Tiwary
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India.
| | - Shamik Chowdhury
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
4
|
Singh K, Kaur H, Sharma PK, Singh G, Singh J. ZnO and cobalt decorated ZnO NPs: Synthesis, photocatalysis and antimicrobial applications. CHEMOSPHERE 2023; 313:137322. [PMID: 36427583 DOI: 10.1016/j.chemosphere.2022.137322] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/31/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
The rapid growth of pollutants, both biological and non-biological, puts environmental systems in jeopardy. In view of this, the current study demonstrates the synthesis of undoped and Cobalt-doped zinc oxide nanoparticles (Co doped ZnO NPs) via co-precipitation method. The confirmation of incorporation of the Co dopant into ZnO NPs was verified through various spectroscopic and microscopic techniques. UV-absorption spectra of cobalt-doped ZnO NPs revealed a red shift with change of absorption spectra from 356 nm to 377 nm as compared to undoped ZnO NPs. XRD studies inferred that the average crystallite size of 0.5% and 1% Co-doped ZnO powder was obtained to be ∼16 nm and 14 nm respectively. A drop in band gap value from 3.48 eV to 3.30 eV provided as substantive evidence of the successful integration of Co2+ ions inside the ZnO matrix. FESEM and HRTEM studies revealed that the obtained ZnO NPs are in narrow size distribution (15-20 nm) with a wurtzite crystal structure. The synthesized ZnO and Co-ZnO NPs showed excellent photocatalytic and antimicrobial potency towards reactive brown dye (RB-1) and two bacterial strains, respectively. 1% Co-doped ZnO demonstrated the maximum photocatalytic activity (∼95%), in contrast to 0.5% Co-doped ZnO and undoped ZnO. Thus, the findings of this work support the developed system has a dual role as the photocatalyst, and antibacterial agent for efficient environmental remediation.
Collapse
Affiliation(s)
- Karanpal Singh
- Department of Electronics Engineering, Sri Guru Granth Sahib World University, Fatehgarh Sahib, 140406, Punjab, India
| | - Harpreet Kaur
- Department of Physics, Sri Guru Granth Sahib World University, Fatehgarh Sahib, 140406, Punjab, India
| | - Pushpender Kumar Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, Rajasthan, India
| | - Gurjinder Singh
- Department of Electronics Engineering, Sri Guru Granth Sahib World University, Fatehgarh Sahib, 140406, Punjab, India.
| | - Jagpreet Singh
- Department of Chemical Engineering, University Centre for Research and Development, Chandigarh University, Gharuan Mohali, 140413, Punjab, India.
| |
Collapse
|
5
|
Mahmoud ME, Khalifa MA, Youssef MR, El‐Sharkawy RM. Influence of MgO and ZnO as nano‐additives on the mechanical, microstructural and thermal performance of high‐density polyethylene. J Appl Polym Sci 2022. [DOI: 10.1002/app.52705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mohamed E. Mahmoud
- Chemistry Department, Faculty of Science Alexandria University Alexandria Egypt
| | - Mohammed A. Khalifa
- Chemistry Department, Faculty of Science Alexandria University Alexandria Egypt
| | - Mahues R. Youssef
- Chemistry Department, Faculty of Science Alexandria University Alexandria Egypt
- Department of Material Science The Egyptian Ethylene & Derivatives Company (ETHYDCO) Alexandria Egypt
| | - Rehab M. El‐Sharkawy
- Chemistry Department, Faculty of Dentistry Pharos University in Alexandria Alexandria Egypt
| |
Collapse
|
6
|
Killedar LS, Shanbhag MM, Malode SJ, Bagihalli GB, Mahapatra S, Mascarenhas RJ, Shetti NP, Chandra P. Ultra-sensitive detection of tizanidine in commercial tablets and urine samples using zinc oxide coated glassy carbon electrode. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106956] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Barani M, Masoudi M, Mashreghi M, Makhdoumi A, Eshghi H. Cell-free extract assisted synthesis of ZnO nanoparticles using aquatic bacterial strains: Biological activities and toxicological evaluation. Int J Pharm 2021; 606:120878. [PMID: 34265392 DOI: 10.1016/j.ijpharm.2021.120878] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/17/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
The introduction of novel bacterial strains and the development of microbial approaches for nanoparticles biosynthesis could minimize the negative environmental impact and eliminate the concern and challenges of the available approaches. In this study, a biological method based on microbial cell-free extract was used for biosynthesis of ZnO NPs using two new aquatic bacteria, Marinobacter sp. 2C8 and Vibrio sp. VLA. The synthesized ZnO NPs were characterized by UV-Visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscope (AFM), dynamic light scattering (DLS) and zeta potential. The UV-Visible absorption peak was found to be at 266 and 250 nm for ZnO-2C8 NPs and ZnO-VLA NPs, respectively. FTIR study suggested that the hydroxyl, amine, and carboxyl groups of bacterial proteins are mainly responsible for stabilizing the biosynthesized ZnO NPs. The formation of hexagonal wurtzite structure of ZnO NPs was confirmed by the XRD pattern. The morphology of the nanoparticles was found to be spherical with the average particle size of about 10.23 ± 2.48 nm and 20.26 ± 4.44 nm for ZnO-2C8 NPs and ZnO-VLA NPs, respectively. The values of zeta potential indicate the high stability of the biosynthesized ZnO NP. Zeta potential values indicated the high stability of the biosynthesized ZnO NP and were obtained -20.54 ± 7.15 and -23.87 ± 2.29 mV for ZnO-2C8 NPs and ZnO-VLA NPs, respectively. The biosynthesized ZnO NPs had antibacterial activity against Gram-negative and Gram-positive strains and possessed excellent antibiofilm activity with the maximum inhibition of about 96.55% at 250 µg/mL. The DPPH activity of ZnO-2C8 NPs and ZnO-VLA NPs were found 88.9% and 85.7% for 2500 μg/mL concentration, respectively. The toxicity test revealed the biocompatibility of the biosynthesized ZnO NPs. The results suggested that this approach is a very good route for synthesizing ZnO NPs with potential applications in biotechnology.
Collapse
Affiliation(s)
- Maryam Barani
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Mina Masoudi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Mansour Mashreghi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; Industrial Microbiology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; Nano Research Center, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.
| | - Ali Makhdoumi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.
| | - Hossein Eshghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.
| |
Collapse
|