1
|
Raza T, Hassan SMT, Hashmi AMS, Zia OB, Inam M, Abidi SAR, Kashif M, Adeel M. Efficacy and Safety of Stem Cell Therapy for Orthopedic Conditions, Including Osteoarthritis and Bone Defects. Cureus 2024; 16:e63980. [PMID: 39105009 PMCID: PMC11299758 DOI: 10.7759/cureus.63980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2024] [Indexed: 08/07/2024] Open
Abstract
INTRODUCTION Orthopedic conditions like osteoarthritis and bone defects pose significant challenges due to their impact on individuals' quality of life. Traditional treatments often provide only symptomatic relief, necessitating alternative therapies for long-term management. Stem cell therapy has grabbed attention for its regenerative and immunomodulatory properties, offering potential for tissue repair and functional restoration. OBJECTIVE This study aims to assess the efficacy and safety of stem cell therapy for orthopedic conditions, specifically osteoarthritis and bone defects. MATERIALS AND METHODS A retrospective cross-sectional study analyzed data from patients who underwent stem cell therapy for osteoarthritis or bone defects between January and September 2023. Outcome measures focused on pain and function improvements using tools such as Visual Analog Scale (VAS) and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), alongside radiographic assessments. Adverse events, range of motion, quality of life, and demographic factors were also examined. Data were collected from electronic medical records while maintaining patient confidentiality. Descriptive statistics using SPSS (IBM Corp., Armonk, NY, USA) were employed to analyze patient characteristics, treatment variables, and outcomes, with statistical significance determined using Chi-square test and Independent t-test. RESULTS Out of 50 individuals, the majority, i.e., 35 (or 70%), were diagnosed with osteoarthritis, while the remaining 15 (30%) had bone defects. Treatment outcomes showed significant improvements in pain and function, with a decrease in mean VAS and WOMAC scores at the six-month follow-up. Seven participants (28%) reported adverse events, and two participants (8%) experienced serious adverse events. CONCLUSION Stem cell therapy shows promise for treating orthopedic conditions like osteoarthritis and bone defects. While demonstrating efficacy in pain management and functional improvement, safety considerations warrant further investigation and optimization of treatment protocols. Future research should focus on refining stem cell therapy techniques and addressing safety concerns to maximize its therapeutic potential in orthopedic practice.
Collapse
Affiliation(s)
- Tauseef Raza
- Orthopedics, Khyber Medical University Institute of Medical Sciences, Kohat, PAK
| | | | | | - Osama Bin Zia
- Orthopedic Surgery, Liaquat College Of Medicine and Dentistry Darul Sehat Hospital, Karachi, PAK
| | - Muhammad Inam
- Orthopedics and Trauma, Medical Teaching Institute Lady Reading Hospital, Peshawar, PAK
| | | | - Muhammad Kashif
- Neurology, Midwestern University Arizona College of Osteopathic Medicine, Glendale, USA
| | - Muhammad Adeel
- Orthopedics, Ayub Medical College Abbottabad and Ayub Teaching Hospital Abbottabad, Abbottabad, PAK
| |
Collapse
|
2
|
Scognamiglio F, Pizzolitto C, Romano M, Teti G, Zara S, Conz M, Donati I, Porrelli D, Falconi M, Marsich E. "A lactose-modified chitosan accelerates chondrogenic differentiation in mesenchymal stem cells spheroids". BIOMATERIALS ADVANCES 2024; 160:213849. [PMID: 38599041 DOI: 10.1016/j.bioadv.2024.213849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
Spheroids derived from human mesenchymal stem cells (hMSCs) are of limited use for cartilage regeneration, as the viability of the cells progressively decreases during the period required for chondrogenic differentiation (21 days). In this work, spheroids based on hMSCs and a lactose-modified chitosan (CTL) were formed by seeding cells onto an air-dried coating of CTL. The polymer coating can inhibit cell adhesion and it is simultaneously incorporated into spheroid structure. CTL-spheroids were characterized from a morphological and biological perspective, and their properties were compared with those of spheroids obtained by seeding the cells onto a non-adherent surface (agar gel). Compared to the latter, smaller and more viable spheroids form in the presence of CTL as early as 4 days of culture. At this time point, analysis of stem cells differentiation in spheroids showed a remarkable increase in collagen type-2 (COL2A1) gene expression (~700-fold compared to day 0), whereas only a 2-fold increase was observed in the control spheroids at day 21. These results were confirmed by histological and transmission electron microscopy (TEM) analyses, which showed that in CTL-spheroids an early deposition of collagen with a banding structure already occurred at day 7. Overall, these results support the use of CTL-spheroids as a novel system for cartilage regeneration, characterized by increased cell viability and differentiation capacity within a short time-frame. This will pave the way for approaches aimed at increasing the success rate of procedures and reducing the time required for tissue regeneration.
Collapse
Affiliation(s)
- F Scognamiglio
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy.
| | - C Pizzolitto
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34129 Trieste, Italy.
| | - M Romano
- Department of Life Sciences, University of Trieste, Via Valerio 28, 34127 Trieste, Italy.
| | - G Teti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| | - S Zara
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy.
| | - M Conz
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy.
| | - I Donati
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy.
| | - D Porrelli
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34129 Trieste, Italy.
| | - M Falconi
- Department of Medical and Surgical Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| | - E Marsich
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34129 Trieste, Italy.
| |
Collapse
|
3
|
Sirous S, Aghamohseni MM, Farhad SZ, Beigi M, Ostadsharif M. Mesenchymal stem cells in PRP and PRF containing poly(3-caprolactone)/gelatin Scaffold: a comparative in-vitro study. Cell Tissue Bank 2024; 25:559-570. [PMID: 38363442 DOI: 10.1007/s10561-023-10116-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 10/09/2023] [Indexed: 02/17/2024]
Abstract
Scaffold design is one of the three most essential parts of tissue engineering. Platelet-rich plasma (PRP) and platelet-rich fibrin (PRF) have been used in clinics and regenerative medicine for years. However, the temporal release of their growth factors limits their efficacy in tissue engineering. In the present study, we planned to synthesize nanofibrous scaffolds with the incorporation of PRP and PRF by electrospinning method to evaluate the effect of the release of PRP and PRF growth factors on osteogenic gene expression, calcification, proliferation, and cell adhesion of human bone marrow mesenchymal stem cell (h-BMSC) as they are part of scaffold structures. Therefore, we combined PRP/PRF, derived from the centrifugation of whole blood, with gelatin and Polycaprolactone (PCL) and produced nanofibrous electrospun PCL/Gel/PRP and PCL/Gel/PRF scaffolds. Three groups of scaffolds were fabricated, and h-BMSCs were seeded on them: (1) PCL/Gel; (2) PCL/Gel/PRP; (3) PCL/Gel/PRF. MTS assay was performed to assess cell proliferation and adhesion, and alizarin red staining confirmed the formation of bone minerals during the experiment. The result indicated that PCL/Gel did not have any better outcomes than the PRP and PRF group in any study variants after the first day of the experiment. PCL/gelatin/PRF was more successful regarding cell proliferation and adhesion. Although PCL/gelatin/PRP showed more promising results on the last day of the experiment in mineralization and osteogenic gene expression, except RUNX2, in which the difference with PCL/gelatin/PRF group was not significant.
Collapse
Affiliation(s)
- Samin Sirous
- Periodontics preceptor, UCLA School of Dentistry, Los Angeles, USA
- School of Dentistry, Islamic Azad University (Khorasgan branch), Isfahan, Iran
| | - Mohammad Mostafa Aghamohseni
- School of Dentistry, Islamic Azad University (Khorasgan branch), Isfahan, Iran.
- Chairman of Student Research Committee, Islamic Azad University (Khorasgan branch), Isfahan, Iran.
| | - Shirin Zahra Farhad
- Department of Periodontics, Faculty of Dentistry, Isfahan (Khorasgan) branch, Islamic Azad University, Isfahan, Iran
| | - Mohammadhossein Beigi
- Silicon Hall: Micro/Nano Manufacturing Facility, Faculty of Engineering and Applied Science, Ontario Tech University, Ontario, Canada
| | - Maryam Ostadsharif
- Department of Medical Basic Sciences, Isfahan(Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| |
Collapse
|
4
|
Rahyussalim AJ, Andar AA, Canintika AF, Putri DA, Kurniawati T. Remarkable recovery of lower extremity motor impairment in degenerative disc disease after percutaneous laser disc decompression combined with umbilical cord-derived mesenchymal stem cells implantation: A case report. Int J Surg Case Rep 2024; 118:109576. [PMID: 38555831 PMCID: PMC10987318 DOI: 10.1016/j.ijscr.2024.109576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
INTRODUCTION AND IMPORTANCE Degenerative disc disease (DDD) is a common cause of low back pain, often leading to significant discomfort for patients. Current treatment options such as spinal fusion and physical therapy focus on symptom management rather than addressing the underlying degeneration. Percutaneous laser disc decompression (PLDD) has shown efficacy in treating radicular pain associated with disc herniation. However, there is a growing interest in utilizing tissue engineering approaches to reverse the pathological process of DDD. While results in larger vertebrates have been inconsistent, mesenchymal stem cells (MSCs) have demonstrated promise in small animal models. CASE PRESENTATION A 46-year-old male presented with low back pain as well as urinary and fecal incontinence. Magnetic resonance imaging revealed disc bulging and foraminal stenosis at the L2-L4 levels. The patient underwent PLDD combined with umbilical cord-derived mesenchymal stem cells (UC-MSCs) injection, which later resulted in significant pain reduction and improved motor function. At six months of follow-up, the patient reported sustained pain relief and functional improvement. CLINICAL DISCUSSION Percutaneous decompression techniques not only substantially reduce intradiscal pressure and facilitate the implosion of herniation inward but also concurrently expedite the degeneration of the intervertebral disc. Therefore, in addition to performing PLDD, stem cell injection is also carried out. This report underscores the importance of integrating mechanical and biological interventions for degenerative disc diseases, suggesting PLDD combined with MSC therapy as a promising strategy for managing DDD and potentially reversing its progression. We found that the patient had decreased pain postoperatively; he no longer complained of pain after six months of follow-up. CONCLUSION PLDD combined with UC-MSCs might be an alternative treatment for patients with DDD. In addition to mechanical treatment, biological treatment with MSC injections is believed to be a potent combination for treating degenerative diseases such as DDD.
Collapse
Affiliation(s)
- Ahmad Jabir Rahyussalim
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universitas Indonesia-Cipto Mangunkusumo General Hospital, Jakarta 10430, Indonesia; Stem Cell and Tissue Engineering Cluster, IMERI, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia; Stem Cell Medical Technology Installation, Cipto Mangunkusumo General Hospital, Jakarta 10430, Indonesia
| | - Anindyo Abshar Andar
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universitas Indonesia-Cipto Mangunkusumo General Hospital, Jakarta 10430, Indonesia
| | - Anissa Feby Canintika
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universitas Indonesia-Cipto Mangunkusumo General Hospital, Jakarta 10430, Indonesia
| | - Dheasitta Andini Putri
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universitas Indonesia-Cipto Mangunkusumo General Hospital, Jakarta 10430, Indonesia
| | - Tri Kurniawati
- Stem Cell and Tissue Engineering Cluster, IMERI, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia; Stem Cell Medical Technology Installation, Cipto Mangunkusumo General Hospital, Jakarta 10430, Indonesia
| |
Collapse
|
5
|
Liu D, Tang W, Tang D, Yan H, Jiao F. Ocu-miR-10a-5p promotes the chondrogenic differentiation of rabbit BMSCs by targeting BTRC-mediated Wnt/β-catenin signaling pathway. In Vitro Cell Dev Biol Anim 2024; 60:343-353. [PMID: 38504085 DOI: 10.1007/s11626-024-00888-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/22/2024] [Indexed: 03/21/2024]
Abstract
MicroRNAs (miRNAs) play an important role in articular cartilage damage in osteoarthritis (OA). However, the biological role of miRNAs in the chondrogenic differentiation of bone marrow mesenchymal stem cell (BMSC) remains largely unclear. Rabbit bone marrow mesenchymal stem cells (rBMSCs) were isolated, cultured, and identified. Afterwards, rBMSCs were induced to chondrogenic differentiation, examined by Alcian Blue staining. Differentially expressed miRNAs were identified in rBMSCs between induced and non-induced groups by miRNA sequencing analysis, part of which was validated via PCR assay. Cell viability and apoptosis were assessed by CCK-8 assay and Hoechst staining. Saffron O staining was utilized to assess chondrocyte hyperplasia. The expression of specific chondrogenic markers, including COL2A1, SOX9, Runx2, MMP-13, Aggrecan, and BMP-2, were measured at mRNA and protein levels. The association between beta-transducin repeat containing E3 ubiquitin protein ligase (BTRC) and miR-10a-5p in the miRNA family from rabbit (ocu-miR-10a-5p) was determined by luciferase reporter assay. A total of 76 differentially expressed miRNAs, including 52 downregulated and 24 upregulated miRNAs, were identified in rBMSCs from the induced group. Inhibition of ocu-miR-10a-5p suppressed rBMSC viability and chondrogenic differentiation, as well as downregulated the expression of β-catenin, SOX9, COL2A1, MMP-13, and Runx2. BTRC was predicted and confirmed as a target of ocu-miR-10a-5p. Overexpression of BTRC rescued the promoting impacts of overexpressed ocu-miR-10a-5p on chondrogenic differentiation of rBMSCs and β-catenin expression. Taken together, our data suggested that ocu-miR-10a-5p facilitated rabbit BMSC survival and chondrogenic differentiation by activating Wnt/β-catenin signaling through BTRC.
Collapse
Affiliation(s)
- Donghua Liu
- Department of Spine Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, China
| | - Wang Tang
- Department of Spine Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, China
| | - Dongming Tang
- Department of Joint Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, 87 Yingbin Road, Huadu District, Guangzhou City, Guangdong Province, China
| | - Haixia Yan
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Feng Jiao
- Department of Joint Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, 87 Yingbin Road, Huadu District, Guangzhou City, Guangdong Province, China.
| |
Collapse
|
6
|
Zahedi Tehrani T, Irani S, Ardeshirylajimi A, Seyedjafari E. Natural based hydrogels promote chondrogenic differentiation of human mesenchymal stem cells. Front Bioeng Biotechnol 2024; 12:1363241. [PMID: 38567084 PMCID: PMC10985146 DOI: 10.3389/fbioe.2024.1363241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/23/2024] [Indexed: 04/04/2024] Open
Abstract
Background: The cartilage tissue lacks blood vessels, which is composed of chondrocytes and ECM. Due to this vessel-less structure, it is difficult to repair cartilage tissue damages. One of the new methods to repair cartilage damage is to use tissue engineering. In the present study, it was attempted to simulate a three-dimensional environment similar to the natural ECM of cartilage tissue by using hydrogels made of natural materials, including Chitosan and different ratios of Alginate. Material and methods: Chitosan, alginate and Chitosan/Alginate hydrogels were fabricated. Fourier Transform Infrared, XRD, swelling ratio, porosity measurement and degradation tests were applied to scaffolds characterization. After that, human adipose derived-mesenchymal stem cells (hADMSCs) were cultured on the hydrogels and then their viability and chondrogenic differentiation capacity were studied. Safranin O and Alcian blue staining, immunofluorescence staining and real time RT-PCR were used as analytical methods for chondrogenic differentiation potential evaluation of hADMSCs when cultured on the hydrogels. Results: The highest degradation rate was detected in Chitosan/Alginate (1:0.5) group The scaffold biocompatibility results revealed that the viability of the cells cultured on the hydrogels groups was not significantly different with the cells cultured in the control group. Safranin O staining, Alcian blue staining, immunofluorescence staining and real time PCR results revealed that the chondrogenic differentiation potential of the hADMSCs when grown on the Chitosan/Alginate hydrogel (1:0.5) was significantly higher than those cell grown on the other groups. Conclusion: Taken together, these results suggest that Chitosan/Alginate hydrogel (1:0.5) could be a promising candidate for cartilage tissue engineering applications.
Collapse
Affiliation(s)
- Tina Zahedi Tehrani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Ehsan Seyedjafari
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
7
|
Shim HE, Kim YJ, Park KH, Park H, Huh KM, Kang SW. Enhancing cartilage regeneration through spheroid culture and hyaluronic acid microparticles: A promising approach for tissue engineering. Carbohydr Polym 2024; 328:121734. [PMID: 38220328 DOI: 10.1016/j.carbpol.2023.121734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/20/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2024]
Abstract
Cell therapy using chondrocytes has shown promise for cartilage regeneration, but maintaining functional characteristics during in vitro culture and ensuring survival after transplantation are challenges. Three-dimensional (3D) cell culture methods, such as spheroid culture, and hydrogels can improve cell survival and functionality. In this study, a new method of culturing spheroids using hyaluronic acid (HA) microparticles was developed. The spheroids mixed with HA microparticles effectively maintained the functional characteristics of chondrocytes during in vitro culture, resulting in improved cell survival and successful cartilage formation in vivo following transplantation. This new method has the potential to improve cell therapy production for cartilage regeneration.
Collapse
Affiliation(s)
- Hye-Eun Shim
- Research Group for Biomimetic Advanced Technology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea; Department of Polymer Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | | | - Kyoung Hwan Park
- Research Group for Biomimetic Advanced Technology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea; Department of Polymer Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Honghyun Park
- Department of Advanced Biomaterials Research, Ceramics Materials Division, Korea Institute of Materials Science, Changwon 51508, Republic of Korea.
| | - Kang Moo Huh
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Sun-Woong Kang
- Research Group for Biomimetic Advanced Technology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea; Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon 34114, Republic of Korea.
| |
Collapse
|
8
|
Amirtaheri Afshar A, Toopchizadeh V, Dolatkhah N, Jahanjou F, Farshbaf‐Khalili A. The efficacy of Nigella sativa L. oil on serum biomarkers of inflammation and oxidative stress and quality of life in patients with knee osteoarthritis: A parallel triple-arm double-blind randomized controlled trial. Food Sci Nutr 2023; 11:7910-7920. [PMID: 38107142 PMCID: PMC10724594 DOI: 10.1002/fsn3.3708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 12/19/2023] Open
Abstract
The aim of this double-blind clinical trial was to investigate the effects of Nigella sativa oil on serum inflammatory and oxidative stress biomarkers and quality of life in patients with knee osteoarthritis (OA). Forty-five patients who met the eligibility criteria were randomly divided into three groups with a ratio of 1:1:1. The first group received 2.5 mL oral N. sativa oil twice/day plus placebo topical oil, the second group received 2.5 mL topical N. sativa oil three times/day plus placebo oral oil, and the third group received oral and topical oil placebos. There were no intergroup differences in baseline characteristics. After 6 weeks of supplementation, oral N. sativa caused a significant improvement in the serum levels of hs-CRP (p = .003), MDA (p = .003), and TAC (p = .001). Oral N. sativa oil compared to placebo (aMD (95% CI): -0.81 (-1.45 to -0.19); p = .012) and topical N. sativa oil [aMD (95% CI): -0.76 (-1.38 to -0.15); p = .016] significantly reduced hs-CRP serum levels. Significant improvements were observed in the general, physical, and mental health subscales in the oral and topical N. sativa oil compared to the placebo group (p < .05). The six-week oral N. sativa oil supplementation was effective in improving inflammatory biomarkers in knee OA. Both oral and topical N. sativa oil increased the quality of life.
Collapse
Affiliation(s)
| | - Vahideh Toopchizadeh
- Physical Medicine and Rehabilitation Research Center, Aging Research InstituteTabriz University of Medical SciencesTabrizIran
| | - Neda Dolatkhah
- Physical Medicine and Rehabilitation Research Center, Aging Research InstituteTabriz University of Medical SciencesTabrizIran
| | - Fatemeh Jahanjou
- Physical Medicine and Rehabilitation Research Center, Aging Research InstituteTabriz University of Medical SciencesTabrizIran
| | - Azizeh Farshbaf‐Khalili
- Physical Medicine and Rehabilitation Research Center, Aging Research InstituteTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
9
|
Jiang Z, Jiang K, Si H, McBride R, Kisiday J, Oakey J. One Step Encapsulation of Mesenchymal Stromal Cells in PEG Norbornene Microgels for Therapeutic Actions. ACS Biomater Sci Eng 2023; 9:6322-6332. [PMID: 37831923 DOI: 10.1021/acsbiomaterials.3c01057] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Cell therapies require control over the cellular response under standardized conditions to ensure continuous delivery of therapeutic agents. Cell encapsulation in biomaterials can be particularly effective at providing cells with a uniformly supportive and permissive cell microenvironment. In this study, two microfluidic droplet device designs were used to successfully encapsulate equine mesenchymal stromal cells (MSCs) into photopolymerized polyethylene glycol norbornene (PEGNB) microscale (∼100-200 μm) hydrogel particles (microgels) in a single on-chip step. To overcome the slow cross-linking kinetics of thiol-ene reactions, long dithiol linkers were used in combination with a polymerization chamber customized to achieve precise retention time for microgels while maintaining cytocompatibility. Thus, homogeneous cell-laden microgels could be continuously fabricated in a high-throughput fashion. Varying linker length mediated both the gel formation rate and material physical properties (stiffness, mass transport, and mesh size) of fabricated microgels. Postencapsulation cell viability and therapeutic indicators of MSCs were evaluated over 14 days, during which the viability remained at least 90%. Gene expression of selected cytokines was not adversely affected by microencapsulation compared to monolayer MSCs. Notably, PEGNB-3.5k microgels rendered significant elevation in FGF-2 and TGF-β on the transcription level, and conditioned media collected from these cultures showed robust promotion in the migration and proliferation of fibroblasts. Collectively, standardized MSC on-chip encapsulation will lead to informed and precise translation to clinical studies, ultimately advancing a variety of tissue engineering and regenerative medicine practices.
Collapse
Affiliation(s)
- Zhongliang Jiang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
- Department of Chemical Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Kun Jiang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
- Department of Chemical Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Hangjun Si
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Ralph McBride
- Department of Chemical Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| | - John Kisiday
- Department of Chemical Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| | - John Oakey
- Department of Chemical Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| |
Collapse
|
10
|
Forteza-Genestra MA, Antich-Rosselló M, Ramis-Munar G, Calvo J, Gayà A, Monjo M, Ramis JM. Comparative effect of platelet- and mesenchymal stromal cell-derived extracellular vesicles on human cartilage explants using an ex vivo inflammatory osteoarthritis model. Bone Joint Res 2023; 12:667-676. [PMID: 37852621 PMCID: PMC10584413 DOI: 10.1302/2046-3758.1210.bjr-2023-0109.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2023] Open
Abstract
Aims Extracellular vesicles (EVs) are nanoparticles secreted by all cells, enriched in proteins, lipids, and nucleic acids related to cell-to-cell communication and vital components of cell-based therapies. Mesenchymal stromal cell (MSC)-derived EVs have been studied as an alternative for osteoarthritis (OA) treatment. However, their clinical translation is hindered by industrial and regulatory challenges. In contrast, platelet-derived EVs might reach clinics faster since platelet concentrates, such as platelet lysates (PL), are already used in therapeutics. Hence, we aimed to test the therapeutic potential of PL-derived extracellular vesicles (pEVs) as a new treatment for OA, which is a degenerative joint disease of articular cartilage and does not have any curative or regenerative treatment, by comparing its effects to those of human umbilical cord MSC-derived EVs (cEVs) on an ex vivo OA-induced model using human cartilage explants. Methods pEVs and cEVs were isolated by size exclusion chromatography (SEC) and physically characterized by nanoparticle tracking analysis (NTA), protein content, and purity. OA conditions were induced in human cartilage explants (10 ng/ml oncostatin M and 2 ng/ml tumour necrosis factor alpha (TNFα)) and treated with 1 × 109 particles of pEVs or cEVs for 14 days. Then, DNA, glycosaminoglycans (GAG), and collagen content were quantified, and a histological study was performed. EV uptake was monitored using PKH26 labelled EVs. Results Significantly higher content of DNA and collagen was observed for the pEV-treated group compared to control and cEV groups. No differences were found in GAG quantification nor in EVs uptake within any treated group. Conclusion In conclusion, pEVs showed better performance than cEVs in our in vitro OA model. Although further studies are needed, pEVs are shown as a potential alternative to cEVs for cell-free regenerative medicine.
Collapse
Affiliation(s)
- Maria A. Forteza-Genestra
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Miquel Antich-Rosselló
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Guillem Ramis-Munar
- Microscopy Area, Serveis Cietificotècnics, University of the Balearic Islands, Palma, Spain
| | - Javier Calvo
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Fundació Banc de Sang i Teixits de les Illes Balears (FBSTIB), Palma, Spain
| | - Antoni Gayà
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Fundació Banc de Sang i Teixits de les Illes Balears (FBSTIB), Palma, Spain
| | - Marta Monjo
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Joana M. Ramis
- Cell Therapy and Tissue Engineering Group, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| |
Collapse
|
11
|
Sargenti A, Pasqua S, Leu M, Dionisi L, Filardo G, Grigolo B, Gazzola D, Santi S, Cavallo C. Adipose Stromal Cell Spheroids for Cartilage Repair: A Promising Tool for Unveiling the Critical Maturation Point. Bioengineering (Basel) 2023; 10:1182. [PMID: 37892912 PMCID: PMC10603958 DOI: 10.3390/bioengineering10101182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Articular cartilage lacks intrinsic regenerative capabilities, and the current treatments fail to regenerate damaged tissue and lead only to temporary pain relief. These limitations have prompted the development of tissue engineering approaches, including 3D culture systems. Thanks to their regenerative properties and capacity to recapitulate embryonic processes, spheroids obtained from mesenchymal stromal cells are increasingly studied as building blocks to obtain functional tissues. The aim of this study was to investigate the capacity of adipose stromal cells to assemble in spheroids and differentiate toward chondrogenic lineage from the perspective of cartilage repair. Spheroids were generated by two different methods (3D chips vs. Ultra-Low Attachment plates), differentiated towards chondrogenic lineage, and their properties were investigated using molecular biology analyses, biophysical measurement of mass density, weight, and size of spheroids, and confocal imaging. Overall, spheroids showed the ability to differentiate by expressing specific cartilaginous markers that correlate with their mass density, defining a critical point at which they start to mature. Considering the spheroid generation method, this pilot study suggested that spheroids obtained with chips are a promising tool for the generation of cartilage organoids that could be used for preclinical/clinical approaches, including personalized therapy.
Collapse
Affiliation(s)
- Azzurra Sargenti
- CellDynamics iSRL, 40136 Bologna, Italy; (A.S.); (S.P.); (L.D.); (D.G.)
| | - Simone Pasqua
- CellDynamics iSRL, 40136 Bologna, Italy; (A.S.); (S.P.); (L.D.); (D.G.)
| | - Marco Leu
- abc biopply ag, 4500 Solothurn, Switzerland;
| | - Laura Dionisi
- CellDynamics iSRL, 40136 Bologna, Italy; (A.S.); (S.P.); (L.D.); (D.G.)
| | - Giuseppe Filardo
- Applied and Translational Research (ATR) Center, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Brunella Grigolo
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Daniele Gazzola
- CellDynamics iSRL, 40136 Bologna, Italy; (A.S.); (S.P.); (L.D.); (D.G.)
| | - Spartaco Santi
- Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, Unit of Bologna, CNR, 40136 Bologna, Italy
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Carola Cavallo
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| |
Collapse
|
12
|
Krauze A, Fus-Kujawa A, Bajdak-Rusinek K, Żyła-Uklejewicz D, Fernandez C, Bednarek I, Gałka S, Sieroń Ł, Bogunia E, Hermyt M, Nożyński J, Milewski K, Czekaj P, Wojakowski W. Impact of local delivery of allogeneic chondrocytes on the biological response and healing of the sternum bones after sternotomy. Sci Rep 2023; 13:15971. [PMID: 37749290 PMCID: PMC10520054 DOI: 10.1038/s41598-023-43255-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023] Open
Abstract
Median sternotomy is the surgical method of choice for many procedures where one of the main problems is the long post-operative wound healing process leading to sternal dehiscence and the development of infection. This leads to prolonged hospital stay and increased mortality due to post-operative complications. A promising solution seems to be the use of allogeneic chondrocytes for wound treatment, whose properties in the field of cartilage reconstruction are widely used in medicine, mainly in orthopedics. In the present study, we investigated the effect of local delivery of allogeneic chondrocytes on the biological response and healing of the sternum after sternotomy. We optimized the culture conditions for the isolated chondrocytes, which were then applied to the sternal incision wound. Chondrocytes in the culture were assessed on the basis of the presence of chondrocyte-specific genes: Sox9, Aggrecan and Collagen II. In turn, the histopathological and immunohistochemical evaluation was used to assess the safety of implantation. In our work, we demonstrated the possibility of obtaining a viable culture of chondrocytes, which were successfully introduced into the sternal wound after sternotomy. Importantly, implantation of allogeneic chondrocytes showed no significant side effects. The obtained results open new possibilities for research on the use of allogeneic chondrocytes in the process of accelerating wound healing after median sternotomy.
Collapse
Affiliation(s)
- Agata Krauze
- Center for Cardiovascular Research and Development, American Heart of Poland SA, 43-450, Ustroń 1, Poland
| | - Agnieszka Fus-Kujawa
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medykow 18 Street, 40-752, Katowice, Poland
| | - Karolina Bajdak-Rusinek
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medykow 18 Street, 40-752, Katowice, Poland.
| | - Dorota Żyła-Uklejewicz
- Center for Cardiovascular Research and Development, American Heart of Poland SA, 43-450, Ustroń 1, Poland
| | - Carlos Fernandez
- Center for Cardiovascular Research and Development, American Heart of Poland SA, 43-450, Ustroń 1, Poland
| | - Ilona Bednarek
- Department of Biotechnology and Genetic Engineering, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055, Katowice, Poland
| | - Sabina Gałka
- Department of Biotechnology and Genetic Engineering, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055, Katowice, Poland
| | - Łukasz Sieroń
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medykow 18 Street, 40-752, Katowice, Poland
| | - Edyta Bogunia
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medykow 18 Street, 40-752, Katowice, Poland
| | - Mateusz Hermyt
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medykow 18 Street, 40-752, Katowice, Poland
| | - Jerzy Nożyński
- Department of Histopathology, Silesian Centre for Heart Diseases, 41-800, Zabrze, Poland
| | - Krzysztof Milewski
- Center for Cardiovascular Research and Development, American Heart of Poland SA, 43-450, Ustroń 1, Poland
| | - Piotr Czekaj
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medykow 18 Street, 40-752, Katowice, Poland
| | - Wojciech Wojakowski
- Division of Cardiology and Structural Heart Diseases, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
13
|
Arias C, Vásquez B, Salazar LA. Propolis as a Potential Therapeutic Agent to Counteract Age-Related Changes in Cartilage: An In Vivo Study. Int J Mol Sci 2023; 24:14272. [PMID: 37762574 PMCID: PMC10532056 DOI: 10.3390/ijms241814272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Aging is intricately linked to chronic low-grade systemic inflammation, which plays a significant role in various age-related conditions, including osteoarthritis (OA). The aging process significantly influences the development of OA due to alterations in cartilage composition, reduced proteoglycan content, dysregulation of growth factor signaling, and heightened oxidative stress. Propolis, a natural product renowned for its potent antioxidant and anti-inflammatory properties, has the potential to mitigate age-induced changes in cartilage. The primary objective of this study was to rigorously assess the impact of in vivo propolis treatment on the histopathological characteristics of knee articular cartilage in senescent rats. This study involved a cohort of twenty male Sprague-Dawley rats, randomly allocated into four distinct groups for comparative analysis: YR (control group consisting of young rats), SR (senescent rats), SR-EEP (senescent rats treated with an ethanolic extract of propolis, EEP), and SR-V (senescent rats administered with a control vehicle). This study employed comprehensive histological and stereological analyses of knee articular cartilage. Propolis treatment exhibited a significant capacity to alleviate the severity of osteoarthritis, enhance the structural integrity of cartilage, and augment chondrocyte density. These promising findings underscore the potential of propolis as a compelling therapeutic agent to counteract age-related alterations in cartilage and, importantly, to potentially forestall the onset of osteoarthritis.
Collapse
Affiliation(s)
- Consuelo Arias
- Escuela de Kinesiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago 8380000, Chile;
| | - Bélgica Vásquez
- Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4811230, Chile
- Centre of Excellence in Morphological and Surgical Studies, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4811230, Chile
| | - Luis A. Salazar
- Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4811230, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4811230, Chile
| |
Collapse
|
14
|
Zhou B, Jiang X, Zhou X, Tan W, Luo H, Lei S, Yang Y. GelMA-based bioactive hydrogel scaffolds with multiple bone defect repair functions: therapeutic strategies and recent advances. Biomater Res 2023; 27:86. [PMID: 37715230 PMCID: PMC10504735 DOI: 10.1186/s40824-023-00422-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/22/2023] [Indexed: 09/17/2023] Open
Abstract
Currently, the clinical treatment of critical bone defects attributed to various causes remains a great challenge, and repairing these defects with synthetic bone substitutes is the most common strategy. In general, tissue engineering materials that mimic the structural, mechanical and biological properties of natural bone have been extensively applied to fill bone defects and promote in situ bone regeneration. Hydrogels with extracellular matrix (ECM)-like properties are common tissue engineering materials, among which methacrylate-based gelatin (GelMA) hydrogels are widely used because of their tunable mechanical properties, excellent photocrosslinking capability and good biocompatibility. Owing to their lack of osteogenic activity, however, GelMA hydrogels are combined with other types of materials with osteogenic activities to improve the osteogenic capability of the current composites. There are three main aspects to consider when enhancing the bone regenerative performance of composite materials: osteoconductivity, vascularization and osteoinduction. Bioceramics, bioglass, biomimetic scaffolds, inorganic ions, bionic periosteum, growth factors and two-dimensional (2D) nanomaterials have been applied in various combinations to achieve enhanced osteogenic and bone regeneration activities. Three-dimensional (3D)-bioprinted scaffolds are a popular research topic in bone tissue engineering (BTE), and printed and customized scaffolds are suitable for restoring large irregular bone defects due to their shape and structural tunability, enhanced mechanical properties, and good biocompatibility. Herein, the recent progress in research on GelMA-based composite hydrogel scaffolds as multifunctional platforms for restoring critical bone defects in plastic or orthopedic clinics is systematically reviewed and summarized. These strategies pave the way for the design of biomimetic bone substitutes for effective bone reconstruction with good biosafety. This review provides novel insights into the development and current trends of research on GelMA-based hydrogels as effective bone tissue engineering (BTE) scaffolds for correcting bone defects, and these contents are summarized and emphasized from various perspectives (osteoconductivity, vascularization, osteoinduction and 3D-bioprinting). In addition, advantages and deficiencies of GelMA-based bone substitutes used for bone regeneration are put forward, and corresponding improvement measures are presented prior to their clinical application in near future (created with BioRender.com).
Collapse
Affiliation(s)
- Bixia Zhou
- Department of Plastic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Xulei Jiang
- Department of Plastic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Xinxin Zhou
- Department of Plastic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Wuyuan Tan
- Department of Plastic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Hang Luo
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, PR China
| | - Shaorong Lei
- Department of Plastic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, PR China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, PR China.
| | - Ying Yang
- Department of Plastic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, PR China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, PR China.
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, PR China.
| |
Collapse
|
15
|
Thoene M, Bejer-Olenska E, Wojtkiewicz J. The Current State of Osteoarthritis Treatment Options Using Stem Cells for Regenerative Therapy: A Review. Int J Mol Sci 2023; 24:ijms24108925. [PMID: 37240271 DOI: 10.3390/ijms24108925] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/27/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Articular cartilage has very low metabolic activity. While minor injuries may be spontaneously repaired within the joint by chondrocytes, there is very little chance of a severely impaired joint regenerating itself when damaged. Therefore, any significant joint injury has little chance of spontaneously healing without some type of therapy. This article is a review that will examine the causes of osteoarthritis, both acute and chronic, and how it may be treated using traditional methods as well as with the latest stem cell technology. The latest regenerative therapy is discussed, including the use and potential risks of mesenchymal stem cells for tissue regeneration and implantation. Applications are then discussed for the treatment of OA in humans after using canine animal models. Since the most successful research models of OA were dogs, the first applications for treatment were veterinary. However, the treatment options have now advanced to the point where patients suffering from osteoarthritis may be treated with this technology. A survey of the literature was performed in order to determine the current state of stem cell technology being used in the treatment of osteoarthritis. Then, the stem cell technology was compared with traditional treatment options.
Collapse
Affiliation(s)
- Michael Thoene
- Department of Medical Biology, School of Public Health, University of Warmia and Mazury in Olsztyn, 10-561 Olsztyn, Poland
| | - Ewa Bejer-Olenska
- Department of Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| | - Joanna Wojtkiewicz
- Department of Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| |
Collapse
|
16
|
Adipose and Bone Marrow Derived-Mesenchymal Stromal Cells Express Similar Tenogenic Expression Levels when Subjected to Mechanical Uniaxial Stretching In Vitro. Stem Cells Int 2023; 2023:4907230. [PMID: 36756494 PMCID: PMC9902123 DOI: 10.1155/2023/4907230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 05/12/2022] [Accepted: 09/03/2022] [Indexed: 01/31/2023] Open
Abstract
The present study was conducted to determine whether adipose derived mesenchymal stromal cells (AD-MSCs) or bone marrow derived-MSCs (BM-MSCs) would provide superior tenogenic expressions when subjected to cyclical tensile loading. The results for this would indicate the best choice of MSCs source to be used for cell-based tendon repair strategies. Both AD-MSCs and BM-MSCs were obtained from ten adult donors (N = 10) and cultured in vitro. At passaged-2, cells from both groups were subjected to cyclical stretching at 1 Hz and 8% of strain. Cellular morphology, orientation, proliferation rate, protein, and gene expression levels were compared at 0, 24, and 48 hours of stretching. In both groups, mechanical stretching results in similar morphological changes, and the redirection of cell alignment is perpendicular to the direction of stretching. Loading at 8% strain did not significantly increase proliferation rates but caused an increase in total collagen expression and tenogenic gene expression levels. In both groups, these levels demonstrated no significant differences suggesting that in a similar loading environment, both cell types possess similar tenogenic potential. In conclusion, AD-MSCs and BM-MSCs both demonstrate similar tenogenic phenotypic and gene expression levels when subjected to cyclic tensile loading at 1 Hz and 8% strain, thus, suggesting that the use of either cell source may be suitable for tendon repair.
Collapse
|
17
|
Du X, Cai L, Xie J, Zhou X. The role of TGF-beta3 in cartilage development and osteoarthritis. Bone Res 2023; 11:2. [PMID: 36588106 PMCID: PMC9806111 DOI: 10.1038/s41413-022-00239-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/25/2022] [Accepted: 11/03/2022] [Indexed: 01/03/2023] Open
Abstract
Articular cartilage serves as a low-friction, load-bearing tissue without the support with blood vessels, lymphatics and nerves, making its repair a big challenge. Transforming growth factor-beta 3 (TGF-β3), a vital member of the highly conserved TGF-β superfamily, plays a versatile role in cartilage physiology and pathology. TGF-β3 influences the whole life cycle of chondrocytes and mediates a series of cellular responses, including cell survival, proliferation, migration, and differentiation. Since TGF-β3 is involved in maintaining the balance between chondrogenic differentiation and chondrocyte hypertrophy, its regulatory role is especially important to cartilage development. Increased TGF-β3 plays a dual role: in healthy tissues, it can facilitate chondrocyte viability, but in osteoarthritic chondrocytes, it can accelerate the progression of disease. Recently, TGF-β3 has been recognized as a potential therapeutic target for osteoarthritis (OA) owing to its protective effect, which it confers by enhancing the recruitment of autologous mesenchymal stem cells (MSCs) to damaged cartilage. However, the biological mechanism of TGF-β3 action in cartilage development and OA is not well understood. In this review, we systematically summarize recent progress in the research on TGF-β3 in cartilage physiology and pathology, providing up-to-date strategies for cartilage repair and preventive treatment.
Collapse
Affiliation(s)
- Xinmei Du
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, China
| | - Linyi Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, China.
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, China.
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, China.
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
18
|
Hsieh CC, Yen BL, Chang CC, Hsu PJ, Lee YW, Yen ML, Yet SF, Chen L. Wnt antagonism without TGFβ induces rapid MSC chondrogenesis via increasing AJ interactions and restricting lineage commitment. iScience 2022; 26:105713. [PMID: 36582823 PMCID: PMC9792887 DOI: 10.1016/j.isci.2022.105713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 07/26/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Human mesenchymal stem cells (MSCs) remain one of the best cell sources for cartilage, a tissue without regenerative capacity. However, MSC chondrogenesis is commonly induced through TGFβ, a pleomorphic growth factor without specificity for this lineage. Using tissue- and induced pluripotent stem cell-derived MSCs, we demonstrate an efficient and precise approach to induce chondrogenesis through Wnt/β-catenin antagonism alone without TGFβ. Compared to TGFβ, Wnt/β-catenin antagonism more rapidly induced MSC chondrogenesis without eliciting off-target lineage specification toward smooth muscle or hypertrophy; this was mediated through increasing N-cadherin levels and β-catenin interactions-key components of the adherens junctions (AJ)-and increasing cytoskeleton-mediated condensation. Validation with transcriptomic analysis of human chondrocytes compared to MSCs and osteoblasts showed significant downregulation of Wnt/β-catenin and TGFβ signaling along with upregulation of α-catenin as an upstream regulator. Our findings underscore the importance of understanding developmental pathways and structural modifications in achieving efficient MSC chondrogenesis for translational application.
Collapse
Affiliation(s)
- Chen-Chan Hsieh
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, Miaoli County35053, Taiwan
| | - B. Linju Yen
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, Miaoli County35053, Taiwan
- Corresponding author
| | - Chia-Chi Chang
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, Miaoli County35053, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center (NDMC), Taipei, Taiwan
| | - Pei-Ju Hsu
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, Miaoli County35053, Taiwan
| | - Yu-Wei Lee
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, Miaoli County35053, Taiwan
| | - Men-Luh Yen
- Department of Obstetrics/Gynecology, National Taiwan University (NTU) Hospital and College of Medicine, NTU, Taipei, Taiwan
| | - Shaw-Fang Yet
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, Miaoli County35053, Taiwan
| | - Linyi Chen
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
19
|
Araújo C, Oliveira RD, Pinto-Ribeiro F, Almeida-Aguiar C. An Insight on the Biomedical Potential of Portuguese Propolis from Gerês. Foods 2022; 11:3431. [PMID: 36360044 PMCID: PMC9656172 DOI: 10.3390/foods11213431] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 09/29/2023] Open
Abstract
Osteoarthritis (OA), a progressive degenerative disease of weight-bearing joints, is the second leading cause of disability in the world. Despite all the advances and research over the last years, none of the proposed strategies has been effective in generating functional and long-lasting tissue. Due to the high prevalence of OA and the urgent need for an effective and successful treatment, interest in natural products as anti-inflammatory agents, such as propolis and its components, has emerged. In this work, we estimate the biomedical potential of Portuguese propolis, evaluating the in vitro antioxidant and anti-inflammatory effects of single hydroalcoholic extracts prepared with propolis from Gerês sampled over a five-year period (2011-2015) (G.EE70 and G.EE35). The in vivo and in vitro anti-inflammatory potential of the hydroalcoholic extract of mixtures of the same samples (mG.EE70 and mG.EE35) was evaluated for the first time too. DPPH• radical scavenging and superoxide anion scavenging assays showed the strong antioxidant potential of both hydroalcoholic extracts, either prepared from single propolis samples or from the mixtures of the same samples. Results also revealed an anti-inflammatory effect of mG.EE35, both in vitro by inhibiting BSA denaturation and in vivo in the OA-induced model by improving mechanical hyperalgesia as well as the gait pattern parameters. Results further support the use of propolis blends as a better and more efficient approach to take full advantage of the bioactive potential of propolis.
Collapse
Affiliation(s)
- Carina Araújo
- Biology Department, University of Minho, 4710-057 Braga, Portugal
- Life and Health Sciences Research Institute (ICVS), University of Minho, 4710-057 Braga, Portugal
| | - Rafaela Dias Oliveira
- Biology Department, University of Minho, 4710-057 Braga, Portugal
- Life and Health Sciences Research Institute (ICVS), University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/4806-909 Guimarães, Portugal
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, 4710-057 Braga, Portugal
| | - Filipa Pinto-Ribeiro
- Life and Health Sciences Research Institute (ICVS), University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/4806-909 Guimarães, Portugal
| | - Cristina Almeida-Aguiar
- Biology Department, University of Minho, 4710-057 Braga, Portugal
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
20
|
Lamparelli EP, Ciardulli MC, Giudice V, Scala P, Vitolo R, Dale TP, Selleri C, Forsyth NR, Maffulli N, Della Porta G. 3D in-vitro cultures of human bone marrow and Wharton’s jelly derived mesenchymal stromal cells show high chondrogenic potential. Front Bioeng Biotechnol 2022; 10:986310. [PMID: 36225603 PMCID: PMC9549977 DOI: 10.3389/fbioe.2022.986310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
In this study, chondrogenic potentials of 3D high-density cultures of Bone Marrow (BM) and Wharton’s Jelly (WJ)-derived mesenchymal stromal cells (MSCs) was investigated by chondrogenesis- and cytokine-related gene expression over a 16-day culture period supplemented with human transforming growth factor (hTGF)-β1 at 10 ng/ml. In BM-MSC 3D models, a marked upregulation of chondrogenesis-related genes, such as SOX9, COL2A1, and ACAN (all p < 0.05) and formation of spherical pellets with structured type II collagen fibers were observed. Similarly, WJ-based high-density culture appeared higher in size and more regular in shape, with a significant overexpression of COL2A1 and ACAN (all p < 0.05) at day 16. Moreover, a similar upregulation trend was documented for IL-6 and IL-10 expression in both BM and WJ 3D systems. In conclusion, MSC-based high-density cultures can be considered a promising in vitro model of cartilage regeneration and tissue engineering. Moreover, our data support the use of WJ-MSCs as a valid alternative for chondrogenic commitment of stem cells in regenerative medicine.
Collapse
Affiliation(s)
- Erwin Pavel Lamparelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, SA, Italy
| | | | - Valentina Giudice
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, SA, Italy
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, Salerno, SA, Italy
| | - Pasqualina Scala
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, SA, Italy
| | - Rosa Vitolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, SA, Italy
| | - Tina Patricia Dale
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, United Kingdom
| | - Carmine Selleri
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, SA, Italy
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, Salerno, SA, Italy
| | - Nicholas Robert Forsyth
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, United Kingdom
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, SA, Italy
- Centre for Sport and Exercise Medicine, Barts and The London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, SA, Italy
- Research Centre for Biomaterials BIONAM, Università di Salerno, Fisciano, SA, Italy
- *Correspondence: Giovanna Della Porta,
| |
Collapse
|
21
|
Zhang D, Liu S, Guan J, Mou F. "Motile-targeting" drug delivery platforms based on micro/nanorobots for tumor therapy. Front Bioeng Biotechnol 2022; 10:1002171. [PMID: 36185435 PMCID: PMC9523273 DOI: 10.3389/fbioe.2022.1002171] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Traditional drug delivery systems opened the gate for tumor-targeted therapy, but they generally took advantage of enhanced permeability and retention or ligand-receptor mediated interaction, and thus suffered from limited recognition range (<0.5 nm) and low targeting efficiency (0.7%, median). Alternatively, micro/nanorobots (MNRs) may act as emerging "motile-targeting" drug delivery platforms to deliver therapeutic payloads, thereby making a giant step toward effective and safe cancer treatment due to their autonomous movement and navigation in biological media. This review focuses on the most recent developments of MNRs in "motile-targeting" drug delivery. After a brief introduction to traditional tumor-targeted drug delivery strategies and various MNRs, the representative applications of MNRs in "motile-targeting" drug delivery are systematically streamlined in terms of the propelling mechanisms. Following a discussion of the current challenges of each type of MNR in biomedical applications, as well as future prospects, several promising designs for MNRs that could benefit in "motile-targeting" drug delivery are proposed. This work is expected to attract and motivate researchers from different communities to advance the creation and practical application of the "motile-targeting" drug delivery platforms.
Collapse
Affiliation(s)
| | | | | | - Fangzhi Mou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
22
|
Padmaja K, Amirtham SM, Rebekah G, Sathishkumar S, Vinod E. Supplementation of articular cartilage-derived chondroprogenitors with bone morphogenic protein-9 enhances chondrogenesis without affecting hypertrophy. Biotechnol Lett 2022; 44:1037-1049. [PMID: 35920961 DOI: 10.1007/s10529-022-03280-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/05/2022] [Indexed: 11/02/2022]
Abstract
INTRODUCTION Chondroprogenitors (CPCs) have emerged as a promising cellular therapy for cartilage-related pathologies due to their inherent primed chondrogenic potential. Studies report that the addition of growth factors such as parathyroid hormone (PTH) and Bone Morphogenic Protein (BMP) enhance the chondroinducive potential in chondrocytes and mesenchymal stem cells. This study evaluated if supplementation of the standard culture medium for cell expansion with 1-34 PTH and BMP-9 would enhance the chondrogenic potential of CPCs and reduce their hypertrophic tendency. METHODS Human chondrocytes were isolated from patients undergoing total knee replacement for osteoarthritis (n = 3). Following fibronectin adhesion assay, passage 1 CPCs were divided and further expanded under three culture conditions (a) control, i.e., cells continued under standard culture conditions, (b) 1-34 PTH group, additional intermittent 6 h exposure with 1-34 PTH and (c) BMP-9 group, additional BMP-9 during culture expansion. All the groups were evaluated for population-doubling, cell cycle analysis, surface marker and gene expression for chondrogenesis, hypertrophy, multilineage differentiation and GAG (glycosaminoglycan)/DNA following chondrogenic differentiation. RESULTS Concerning growth kinetics, the BMP-9 group exhibited a significantly lower S-phase and population-doubling when compared to the other two groups. Qualitative analysis for chondrogenic potential (Alcian blue, Safranin O staining and Toluidine blue for GAG) revealed that the BMP-9 group exhibited the highest uptake. The BMP-9 group also showed significantly higher COL2A1 expression than the control group, with no change in the hypertrophy marker expression. CONCLUSION BMP-9 can potentially be used as an additive for CPCs expansion, to enhance their chondrogenic potential without affecting their low hypertrophic tendency. The mitigating effects of 1-34PTH on hypertrophy would benefit further investigation when used in combination with BMP-9 to enhance chondrogenesis whilst reducing hypertrophy.
Collapse
Affiliation(s)
- Kawin Padmaja
- Department of Physiology, Christian Medical College, Vellore, 632002, India
| | | | - Grace Rebekah
- Department of Biostatistics, Christian Medical College, Vellore, 632002, India
| | | | - Elizabeth Vinod
- Department of Physiology, Christian Medical College, Vellore, 632002, India. .,Centre for Stem Cell Research, (A Unit of InStem, Bengaluru), Christian Medical College, Vellore, 632002, India.
| |
Collapse
|
23
|
Mullins K, Filan D, Carton P. Platelet-Rich Plasma Is Not Associated With Improved Outcomes Following Hip Femoroacetabular Impingement Surgery: Very Low-Quality Evidence Suggests Hyaluronic Acid and Cell-Based Therapies May Be Beneficial—A Systematic Review of Biological Treatments. Arthrosc Sports Med Rehabil 2022; 4:e1557-e1573. [PMID: 36033174 PMCID: PMC9402476 DOI: 10.1016/j.asmr.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/01/2022] [Indexed: 11/19/2022] Open
Abstract
Purpose To examine the efficacy of biologic agents in the treatment of cartilage defects associated with femoroacetabular impingement (FAI). Methods PubMed, Ovid MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials, and the Cochrane Database of Systematic Reviews were reviewed by 2 independent reviewers for eligible studies. We included randomized and nonrandomized control trials as well as uncontrolled case series and retrospective studies. Studies were excluded if they included injections of corticosteroids, papers that described technique only, review papers, and those not in the English language. Demographics, treatment type, outcome of treatment, and complications were extracted, whereas risk of bias and study quality were assessed independently using the risk of bias tool (ROB2) and effective public health practice project tool. A narrative synthesis was performed, and standardized mean differences were reported. Certainty of evidence was assessed using the GRADE approach. Results Eighteen studies consisting of 1,024 patients met the inclusion criteria. Three studies involved the use of platelet-rich plasma (PRP) as an adjuvant to surgery and were included in the meta-analysis. Three studies administered hyaluronic acid (HA) as a primary treatment. Twelve involved various cell-based methods of chondrocyte stimulation for cartilage defects associated with FAI, but heterogeneity did not allow for pooling. Low-quality evidence indicates PRP is not associated with improved outcomes following surgery (mean difference –1.42, 95% confidence interval –3.95 to 1.11, P = .27). Very-low-quality evidence suggests HA (standardized mean difference 1.15, 95% confidence interval 0.64-1.66, P < .001, Z = 4.39) and cell-based therapies may improve function and pain in patients with FAI. Conclusions Low-quality evidence indicates PRP is not associated with improved outcomes following hip FAI surgery, and very-low-quality evidence suggests HA and cell-based therapies may improve outcomes. Level of Evidence systematic review of Level I-V studies.
Collapse
Affiliation(s)
- Karen Mullins
- UPMC Sports Medicine Clinic, WIT Arena, Waterford, Ireland
- Address correspondence to Karen Mullins, UPMC Sports Medicine Clinic, WIT Arena, Cork Rd., Waterford, Ireland.
| | - David Filan
- UPMC Sports Medicine Clinic, WIT Arena, Waterford, Ireland
| | - Patrick Carton
- UPMC Sports Medicine Clinic, WIT Arena, Waterford, Ireland
- The Hip and Groin Clinic, UPMC Whitfield, Butlerstown North, Waterford, Ireland
| |
Collapse
|
24
|
Zheng K, Ma Y, Chiu C, Pang Y, Gao J, Zhang C, Du D. Co-culture pellet of human Wharton's jelly mesenchymal stem cells and rat costal chondrocytes as a candidate for articular cartilage regeneration: in vitro and in vivo study. Stem Cell Res Ther 2022; 13:386. [PMID: 35907866 PMCID: PMC9338579 DOI: 10.1186/s13287-022-03094-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Seeding cells are key factors in cell-based cartilage tissue regeneration. Monoculture of either chondrocyte or mesenchymal stem cells has several limitations. In recent years, co-culture strategies have provided potential solutions. In this study, directly co-cultured rat costal chondrocytes (CCs) and human Wharton's jelly mesenchymal stem (hWJMSCs) cells were evaluated as a candidate to regenerate articular cartilage. METHODS Rat CCs are directly co-cultured with hWJMSCs in a pellet model at different ratios (3:1, 1:1, 1:3) for 21 days. The monoculture pellets were used as controls. RT-qPCR, biochemical assays, histological staining and evaluations were performed to analyze the chondrogenic differentiation of each group. The 1:1 ratio co-culture pellet group together with monoculture controls were implanted into the osteochondral defects made on the femoral grooves of the rats for 4, 8, 12 weeks. Then, macroscopic and histological evaluations were performed. RESULTS Compared to rat CCs pellet group, 3:1 and 1:1 ratio group demonstrated similar extracellular matrix production but less hypertrophy intendency. Immunochemistry staining found the consistent results. RT-PCR analysis indicated that chondrogenesis was promoted in co-cultured rat CCs, while expressions of hypertrophic genes were inhibited. However, hWJMSCs showed only slightly improved in chondrogenesis but not significantly different in hypertrophic expressions. In vivo experiments showed that all the pellets filled the defects but co-culture pellets demonstrated reduced hypertrophy, better surrounding cartilage integration and appropriate subchondral bone remodeling. CONCLUSION Co-culture of rat CCs and hWJMSCs demonstrated stable chondrogenic phenotype and decreased hypertrophic intendency in both vitro and vivo. These results suggest this co-culture combination as a promising candidate in articular cartilage regeneration.
Collapse
Affiliation(s)
- Kaiwen Zheng
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Yiyang Ma
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Cheng Chiu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Yidan Pang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Junjie Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| | - Dajiang Du
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
25
|
Liang R, Yang X, Yew PYM, Sugiarto S, Zhu Q, Zhao J, Loh XJ, Zheng L, Kai D. PLA-lignin nanofibers as antioxidant biomaterials for cartilage regeneration and osteoarthritis treatment. J Nanobiotechnology 2022; 20:327. [PMID: 35842720 PMCID: PMC9287996 DOI: 10.1186/s12951-022-01534-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/28/2022] [Indexed: 11/22/2022] Open
Abstract
Background Osteoarthritis (OA) is common musculoskeletal disorders associated with overgeneration of free radicals, and it causes joint pain, inflammation, and cartilage degradation. Lignin as a natural antioxidant biopolymer has shown its great potential for biomedical applications. In this work, we developed a series of lignin-based nanofibers as antioxidative scaffolds for cartilage tissue engineering. Results The nanofibers were engineered by grafting poly(lactic acid) (PLA) into lignin via ring-opening polymerization and followed by electrospinning. Varying the lignin content in the system was able to adjust the physiochemical properties of the resulting nanofibers, including fiber diameters, mechanical and viscoelastic properties, and antioxidant activity. In vitro study demonstrated that the PLA-lignin nanofibers could protect bone marrow-derived mesenchymal stem/stromal cells (BMSCs) from oxidative stress and promote the chondrogenic differentiation. Moreover, the animal study showed that the lignin nanofibers could promote cartilage regeneration and repair cartilage defects within 6 weeks of implantation. Conclusion Our study indicated that lignin-based nanofibers could serve as an antioxidant tissue engineering scaffold and facilitate the cartilage regrowth for OA treatment. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01534-2.
Collapse
Affiliation(s)
- Ruiming Liang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine & Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application , Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Xingchen Yang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine & Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application , Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Pek Yin Michelle Yew
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way, #08-03 Innovis, Singapore, 138634, Singapore.,Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Sigit Sugiarto
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way, #08-03 Innovis, Singapore, 138634, Singapore
| | - Qiang Zhu
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way, #08-03 Innovis, Singapore, 138634, Singapore
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine & Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application , Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China.,Department of Orthopaedics Trauma and Hand Surgery, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way, #08-03 Innovis, Singapore, 138634, Singapore
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine & Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application , Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China. .,Department of Orthopaedics Trauma and Hand Surgery, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China.
| | - Dan Kai
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way, #08-03 Innovis, Singapore, 138634, Singapore. .,Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), A*STAR, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore.
| |
Collapse
|
26
|
Agten H, Van Hoven I, Viseu SR, Van Hoorick J, Van Vlierberghe S, Luyten FP, Bloemen V. In Vitro and In Vivo Evaluation of 3D Constructs Engineered with Human iPSC-Derived Chondrocytes in Gelatin-Methacryloyl Hydrogel. Biotechnol Bioeng 2022; 119:2950-2963. [PMID: 35781799 DOI: 10.1002/bit.28168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/06/2022] [Accepted: 06/15/2022] [Indexed: 11/09/2022]
Abstract
Articular cartilage defects have limited healing potential and, when left untreated, can lead to osteoarthritis. Tissue engineering focuses on regenerating the damaged joint surface, preferably in an early stage. Here we investigate the regenerative potential of 3D constructs consisting of human iPSC-derived chondrocytes in gelatin-methacryloyl (GelMA) hydrogel for stable hyaline cartilage production. iPSC-derived chondrocytes are encapsulated in GelMA hydrogel at low (1x107 mL-1 ) and high (2x107 mL-1 ) density. In conventional medium, GelMA hydrogel supports the chondrocyte phenotype, as opposed to cells cultured in 3D in absence of hydrogel. Moreover, encapsulated iPSC-derived chondrocytes preserve their in vivo matrix formation capacity after 21 days in vitro. In differentiation medium, hyaline cartilage-like tissue forms after 21 days, demonstrated by highly sulfated glycosaminoglycans and collagen type II. Matrix deposition is delayed at low encapsulation density, corroborating with lower transcript levels of COL2A1. An ectopic assay in nude mice demonstrates further maturation of the matrix deposited in vitro. Direct ectopic implantation of iPSC-derived chondrocyte-laden GelMA, without in vitro priming, also generates hyaline cartilage-like tissue, albeit less mature. Since it is unclear what maturity upon implantation is desired for joint surface regeneration, this is an attractive technology to generate immature and more mature hyaline cartilage-like tissue. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hannah Agten
- Surface and Interface Engineered Materials (SIEM), Group T Leuven Campus, KU Leuven, Andreas Vesaliusstraat 13 box, 2600, Leuven, Belgium.,Prometheus, Division of Skeletal Tissue Engineering, Skeletal Biology and Engineering Research Center, O&N 1, KU Leuven, Herestraat 49 Box, 813, Leuven, Belgium
| | - Inge Van Hoven
- Prometheus, Division of Skeletal Tissue Engineering, Skeletal Biology and Engineering Research Center, O&N 1, KU Leuven, Herestraat 49 Box, 813, Leuven, Belgium
| | - Samuel Ribeiro Viseu
- Prometheus, Division of Skeletal Tissue Engineering, Skeletal Biology and Engineering Research Center, O&N 1, KU Leuven, Herestraat 49 Box, 813, Leuven, Belgium
| | - Jasper Van Hoorick
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium, Krijgslaan 281, S4-Bis, Ghent, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium, Krijgslaan 281, S4-Bis, Ghent, Belgium
| | - Frank P Luyten
- Prometheus, Division of Skeletal Tissue Engineering, Skeletal Biology and Engineering Research Center, O&N 1, KU Leuven, Herestraat 49 Box, 813, Leuven, Belgium
| | - Veerle Bloemen
- Surface and Interface Engineered Materials (SIEM), Group T Leuven Campus, KU Leuven, Andreas Vesaliusstraat 13 box, 2600, Leuven, Belgium.,Prometheus, Division of Skeletal Tissue Engineering, Skeletal Biology and Engineering Research Center, O&N 1, KU Leuven, Herestraat 49 Box, 813, Leuven, Belgium
| |
Collapse
|
27
|
Song Y, Jorgensen C. Mesenchymal Stromal Cells in Osteoarthritis: Evidence for Structural Benefit and Cartilage Repair. Biomedicines 2022; 10:biomedicines10061278. [PMID: 35740299 PMCID: PMC9219878 DOI: 10.3390/biomedicines10061278] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/24/2022] [Accepted: 05/28/2022] [Indexed: 12/15/2022] Open
Abstract
Osteoarthritis (OA) presents a major clinical challenge to rheumatologists and orthopedists due to the lack of available drugs reducing structural degradation. Mesenchymal stromal cells (MSCs) may represent new therapeutic approaches in cartilage regeneration. In this review, we highlight the latest knowledge on the biological properties of MSC, such as their chondrogenic and immunomodulatory potential, and we give a brief overview of the effects of MSCs in preclinical and clinical studies of OA treatment and also compare different MSC sources, with the adipose tissue-derived MSCs being promising. Then, we focus on their structural benefit in treating OA and summarize the current evidence for the assessment of cartilage in OA according to magnetic resonance imaging (MRI) and second-look arthroscopy after MSC therapy. Finally, this review provides a brief perspective on enhancing the activity of MSCs.
Collapse
|
28
|
Decellularised Cartilage ECM Culture Coatings Drive Rapid and Robust Chondrogenic Differentiation of Human Periosteal Cells. Bioengineering (Basel) 2022; 9:bioengineering9050203. [PMID: 35621481 PMCID: PMC9137502 DOI: 10.3390/bioengineering9050203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
The control of cell behaviour in an effort to create highly homogeneous cultures is becoming an area of intense research, both to elucidate fundamental biology and for regenerative applications. The extracellular matrix (ECM) controls many cellular processes in vivo, and as such is a rich source of cues that may be translated in vitro. Herein, we describe the creation of cell culture coatings from porcine decellularised hyaline cartilage through enzymatic digestion. Surprisingly, heat-mediated sterilisation created a coating with the capacity to rapidly and robustly induce chondrogenic differentiation of human periosteal cells. This differentiation was validated through the alteration of cell phenotype from a fibroblastic to a cuboidal/cobblestone chondrocyte-like appearance. Moreover, chondrogenic gene expression further supported this observation, where cells cultured on heat sterilised ECM-coated plastic displayed higher expression of COL2A1, ACAN and PRG4 (p < 0.05) compared to non-coated plastic cultures. Interestingly, COL2A1 and ACAN expression in this context were sensitive to initial cell density; however, SOX9 expression appeared to be mainly driven by the coating independent of seeding density. The creation of a highly chondrogenic coating may provide a cost-effective solution for the differentiation and/or expansion of human chondrocytes aimed towards cartilage repair strategies.
Collapse
|
29
|
Wang X, Xu X, Zhang Y, An X, Zhang X, Chen G, Jiang Q, Yang J. Duo Cadherin-Functionalized Microparticles Synergistically Induce Chondrogenesis and Cartilage Repair of Stem Cell Aggregates. Adv Healthc Mater 2022; 11:e2200246. [PMID: 35485302 DOI: 10.1002/adhm.202200246] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/07/2022] [Indexed: 11/10/2022]
Abstract
Mesenchymal stem cell (MSC) aggregates incorporated with microparticles of functional materials have shown promising prospects in the field of cell therapy for cartilage repair. Given the importance of cadherins in modulating the stemness and chondrogenesis of MSCs, the use of transforming growth factor β1 (TGFβ1)-loaded poly (lactic-co-glycolic acid) (PLGA)-based composite microparticles inspired by duo cadherin (human E- and N-cadherin fusion proteins) to construct a bioartificial stem cell niche in engineered human MSC (hMSC) aggregates to promote chondrogenesis and cartilage regeneration is proposed. The hE/N-cadherin-functionalized PLGA/chitosan-heparin-TGFβ1 (Duo hE/N-cad@P/C-h-TGFβ1) microparticles spatiotemporally upregulates the endogenous E/N-cadherin expression of hMSC aggregates which further amplifies the chondrogenic differentiation and modulate paracrine and anti-inflammatory functions of hMSCs toward constructing a favorable microenvironment for chondrogenesis. The Duo hE/N-cad@P/C-h-TGFβ1 microparticles finely regulate the response of hMSCs to biochemical and mechanical signal stimuli in the microenvironment through the cadherin/catenin-Yes-associated protein signal transduction, which inhibits the hypertrophy of hMSC-derived chondrocytes. Furthermore, immunofluorescent and histological examinations show that the Duo hE/N-cad@P/C-h-TGFβ1 microparticles significantly improve regeneration of cartilage and subchondral bone in vivo. Together, the application of duo cadherin-functionalized microparticles is considered an innovative material-wise approach to exogenously activate hMSC aggregates for functional applications in regenerative medicine.
Collapse
Affiliation(s)
- Xueping Wang
- The Key Laboratory of Bioactive Materials Ministry of Education College of Life Science Nankai University Tianjin 300071 P. R. China
| | - Xingquan Xu
- State Key Laboratory of Pharmaceutical Biotechnology Division of Sports Medicine and Adult Reconstructive Surgery and Department of Orthopedic Surgery Nanjing Drum Tower Hospital The Affiliated Hospital of Nanjing University Medical School 321 Zhongshan Road Nanjing Jiangsu 210008 P. R. China
| | - Yan Zhang
- State Key Laboratory of Medicinal Chemical Biology Nankai University Tianjin 300350 P. R. China
| | - Xueying An
- State Key Laboratory of Pharmaceutical Biotechnology Division of Sports Medicine and Adult Reconstructive Surgery and Department of Orthopedic Surgery Nanjing Drum Tower Hospital The Affiliated Hospital of Nanjing University Medical School 321 Zhongshan Road Nanjing Jiangsu 210008 P. R. China
| | - Xue Zhang
- The Key Laboratory of Bioactive Materials Ministry of Education College of Life Science Nankai University Tianjin 300071 P. R. China
| | - Guoqiang Chen
- The Key Laboratory of Bioactive Materials Ministry of Education College of Life Science Nankai University Tianjin 300071 P. R. China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology Division of Sports Medicine and Adult Reconstructive Surgery and Department of Orthopedic Surgery Nanjing Drum Tower Hospital The Affiliated Hospital of Nanjing University Medical School 321 Zhongshan Road Nanjing Jiangsu 210008 P. R. China
| | - Jun Yang
- The Key Laboratory of Bioactive Materials Ministry of Education College of Life Science Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
30
|
Staubli F, Stoddart MJ, D'Este M, Schwab A. Pre-culture of human mesenchymal stromal cells in spheroids facilitates chondrogenesis at a low total cell count upon embedding in biomaterials to generate cartilage microtissues. Acta Biomater 2022; 143:253-265. [PMID: 35240315 DOI: 10.1016/j.actbio.2022.02.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 12/29/2022]
Abstract
Material-assisted cartilage tissue engineering has limited application in cartilage treatment due to hypertrophic tissue formation and high cell counts required. This study aimed at investigating the potential of human mesenchymal stromal cell (hMSC) spheroids embedded in biomaterials to study the effect of biomaterial composition on cell differentiation. Pre-cultured (3 days, chondrogenic differentiation media) spheroids (250 cells/spheroid) were embedded in tyramine-modified hyaluronic acid (THA) and collagen type I (Col) composite hydrogels (four combinations of THA (12.5 vs 16.7 mg/ml) and Col (2.5 vs 1.7 mg/ml) content) at a cell density of 5 × 106 cells/ml (2 × 104 spheroids/ml). Macropellets derived from single hMSCs (2.5 × 105 cells, ScMP) or hMSC spheroids (2.5 × 105 cells, 103 spheroids, SpMP) served as control. hMSC differentiation was analyzed using glycosaminoglycan (GAG) quantification, gene expression analysis and (immuno-)histology. Embedding of hMSC spheroids in THA-Col induced chondrogenic differentiation marked by upregulation of aggrecan (ACAN) and COL2A1, and the production of GAGs . Lower THA led to more pronounced chondrogenic phenotype compared to higher THA content. Col content had no significant influence on hMSC chondrogenesis. Pellet cultures showed an upregulation in chondrogenic-associated genes and production of GAGs with less upregulation of hypertrophic-associated genes in SpMP culture compared to ScMP group. This study presents hMSC pre-culture in spheroids as promising approach to study chondrogenic differentiation after biomaterial encapsulation at low total cell count (5 × 106/ml) without compromising chondrogenic matrix production. This approach can be applied to assemble microtissues in biomaterials to generate large cartilage construct. STATEMENT OF SIGNIFICANCE: In vitro studies investigating the chondrogenic potential of biomaterials are limited due to the low cell-cell contact of encapsulated single cells. Here, we introduce the use of pre-cultured hMSC spheroids to study chondrogenesis upon encapsulation in a biomaterial. The use of spheroids takes advantage of the high cell-cell contact within each spheroid being critical in the early chondrogenesis of hMSCs. At a low seeding density of 5·106 cells/ml (2 × 104 spheroids/ml) we demonstrated hMSC chondrogenesis and cartilaginous matrix deposition. Our results indicate that the pre-culture might have a beneficial effect on hypertrophic gene expression without compromising chondrogenic differentiation. This approach has shown potential to assemble microtissues (here spheroids) in biomaterials to generate large cartilage constructs and to study the effect of biomaterial composition on cell alignment and migration.
Collapse
|
31
|
Injectable cultured bone marrow derived mesenchymal cells vs chondrocytes in the treatment of chondral defects of the knee - RCT with 6 years follow-up. J Clin Orthop Trauma 2022; 28:101845. [PMID: 35433252 PMCID: PMC9006751 DOI: 10.1016/j.jcot.2022.101845] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 10/18/2022] Open
Abstract
Articular cartilage has unique biological and biomechanical characteristics. Damage to this tissue fails to heal spontaneously, leading to progressive arthritis. Cartilage repair techniques have been looked forward to in the treatment of significant cartilage injuries. Cell-based regenerative techniques like the two-staged cultured chondrocytes and single-stage mesenchymal cell transplantation have been tried with varying results and limitations. We study the outcomes of cultured bone marrow derived MSCs in the treatment of articular cartilage defects of the knee in comparison to autologous cultured chondrocyte implantation (ACI). Both cultured MSC and ACI treatment methods resulted in significant improvements in patient reported outcome measures (PROMs). There was no difference in the PROMs, MOCART scores, T2∗ mapping and dGEMRIC values between the groups. Use of cultured MSCs leads to good clinical outcomes similar to ACI and represents a promising treatment to restore the articular cartilage in the knee.
Collapse
|
32
|
Abstract
Human mesenchymal stem cells (MSCs), also known as mesenchymal stromal cells or medicinal signaling cells, are important adult stem cells for regenerative medicine, largely due to their regenerative characteristics such as self-renewal, secretion of trophic factors, and the capability of inducing mesenchymal cell lineages. MSCs also possess homing and trophic properties modulating immune system, influencing microenvironment around damaged tissues and enhancing tissue repair, thus offering a broad perspective in cell-based therapies. Therefore, it is not surprising that MSCs have been the broadly used adult stem cells in clinical trials. To gain better insights into the current applications of MSCs in clinical applications, we perform a comprehensive review of reported data of MSCs clinical trials conducted globally. We summarize the biological effects and mechanisms of action of MSCs, elucidating recent clinical trials phases and findings, highlighting therapeutic effects of MSCs in several representative diseases, including neurological, musculoskeletal diseases and most recent Coronavirus infectious disease. Finally, we also highlight the challenges faced by many clinical trials and propose potential solutions to streamline the use of MSCs in routine clinical applications and regenerative medicine.
Collapse
|
33
|
Barlian A, Saputri DHA, Hernando A, Khoirinaya C, Prajatelistia E, Tanoto H. Spidroin striped micropattern promotes chondrogenic differentiation of human Wharton's jelly mesenchymal stem cells. Sci Rep 2022; 12:4837. [PMID: 35319008 PMCID: PMC8941093 DOI: 10.1038/s41598-022-08982-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 03/14/2022] [Indexed: 11/29/2022] Open
Abstract
Cartilage tissue engineering, particularly micropattern, can influence the biophysical properties of mesenchymal stem cells (MSCs) leading to chondrogenesis. In this research, human Wharton’s jelly MSCs (hWJ-MSCs) were grown on a striped micropattern containing spider silk protein (spidroin) from Argiope appensa. This research aims to direct hWJ-MSCs chondrogenesis using micropattern made of spidroin bioink as opposed to fibronectin that often used as the gold standard. Cells were cultured on striped micropattern of 500 µm and 1000 µm width sizes without chondrogenic differentiation medium for 21 days. The immunocytochemistry result showed that spidroin contains RGD sequences and facilitates cell adhesion via integrin β1. Chondrogenesis was observed through the expression of glycosaminoglycan, type II collagen, and SOX9. The result on glycosaminoglycan content proved that 1000 µm was the optimal width to support chondrogenesis. Spidroin micropattern induced significantly higher expression of SOX9 mRNA on day-21 and SOX9 protein was located inside the nucleus starting from day-7. COL2A1 mRNA of spidroin micropattern groups was downregulated on day-21 and collagen type II protein was detected starting from day-14. These results showed that spidroin micropattern enhances chondrogenic markers while maintains long-term upregulation of SOX9, and therefore has the potential as a new method for cartilage tissue engineering.
Collapse
Affiliation(s)
- Anggraini Barlian
- School of Life Sciences and Technology, Bandung Institute of Technology, Bandung, West Java, 40132, Indonesia. .,Research Center for Nanosciences and Nanotechnology, Bandung Institute of Technology, Bandung, West Java, 40132, Indonesia.
| | - Dinda Hani'ah Arum Saputri
- School of Life Sciences and Technology, Bandung Institute of Technology, Bandung, West Java, 40132, Indonesia
| | - Adriel Hernando
- School of Life Sciences and Technology, Bandung Institute of Technology, Bandung, West Java, 40132, Indonesia
| | - Candrani Khoirinaya
- School of Life Sciences and Technology, Bandung Institute of Technology, Bandung, West Java, 40132, Indonesia
| | - Ekavianty Prajatelistia
- Faculty of Mechanical and Aerospace Engineering, Bandung Institute of Technology, Bandung, West Java, 40132, Indonesia
| | - Hutomo Tanoto
- Faculty of Mechanical and Aerospace Engineering, Bandung Institute of Technology, Bandung, West Java, 40132, Indonesia
| |
Collapse
|
34
|
Katoh S, Yoshioka H, Suzuki S, Nakajima H, Iwasaki M, Senthilkumar R, Preethy S, Abraham SJK. An efficient polymer cocktail-based transportation method for cartilage tissue, yielding chondrocytes with enhanced hyaline cartilage expression during in vitro culturing. J Orthop 2022; 29:60-64. [PMID: 35145328 PMCID: PMC8814592 DOI: 10.1016/j.jor.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/27/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Chondrocytes are used in cell-based therapies such as autologous chondrocyte implantation (ACI) and matrix-associated cartilage implantation (MACI). To transport the cartilage tissue to the laboratory for in vitro culturing, phosphate-buffered saline (PBS), Euro-Collins solution (ECS) and Dulbecco's Modified Eagle's Medium (DMEM) are commonly employed at 4-8 °C. METHODS In this study, eight samples of human cartilage biopsy tissues from elderly patients with severe osteoarthritis undergoing arthroscopy, which would otherwise have been discarded, were used. The cartilage tissue samples were compared to assess the cell yield between two transportation groups: i) a thermo-reversible gelation polymer (TGP) based method without cool preservation (∼25 °C) and ii) ECS transport at 4 °C. These samples were subjected to in vitro culture in a two-dimensional (2D) monolayer for two weeks and subsequently in a three-dimensional (3D) TGP scaffold for six weeks. RESULTS The cell count obtained from the tissues transported in TGP was higher (0.2 million cells) than those transported in ECS (0.08 million cells) both after initial processing and after in vitro culturing for 2 weeks in 2D (18 million cells compared with 10 million cells). In addition, mRNA quantification demonstrated significantly higher expression of Col2a1 and SOX-9 in 3D-TGP cultured cells and lower expression of COL1a1 in RT-PCR, characteristic of the hyaline cartilage phenotype, than in 2D culture. CONCLUSION This study confirms that the TGP cocktail is suitable for both the transport of human cartilage tissue and for in vitro culturing to yield better-quality cells for use in regenerative therapies.
Collapse
Affiliation(s)
- Shojiro Katoh
- Edogawa Evolutionary Lab of Science, Edogawa Hospital Campus, 2-24-18, Higashi Koiwa, Edogawa-Ku, Tokyo, 133-0052, Japan,Department of Orthopaedic Surgery, Edogawa Hospital, 2-24-18, Higashi Koiwa, Edogawa-Ku, Tokyo, 133-0052, Japan
| | - Hiroshi Yoshioka
- Mebiol Inc., 1-25-8, Nakahara, Hiratsuka, 254-0075, Kanagawa, Japan
| | - Shoji Suzuki
- Department of Clinical Education, University of Yamanashi -Faculty of Medicine, 1110, Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Hiroyuki Nakajima
- II Department of Surgery, University of Yamanashi -Faculty of Medicine, 1110, Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Masaru Iwasaki
- Centre for Advancing Clinical Research (CACR), University of Yamanashi -Faculty of Medicine, 1110, Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Rajappa Senthilkumar
- The Fujio-Eiji Academic Terrain (FEAT), Nichi-In Centre for Regenerative Medicine (NCRM), PB 1262, Chennai, 600034, Tamil Nadu, India
| | - Senthilkumar Preethy
- The Fujio-Eiji Academic Terrain (FEAT), Nichi-In Centre for Regenerative Medicine (NCRM), PB 1262, Chennai, 600034, Tamil Nadu, India
| | - Samuel JK. Abraham
- Centre for Advancing Clinical Research (CACR), University of Yamanashi -Faculty of Medicine, 1110, Shimokato, Chuo, Yamanashi, 409-3898, Japan,The Fujio-Eiji Academic Terrain (FEAT), Nichi-In Centre for Regenerative Medicine (NCRM), PB 1262, Chennai, 600034, Tamil Nadu, India,The Mary-Yoshio Translational Hexagon (MYTH), Nichi-In Centre for Regenerative Medicine (NCRM), PB 1262, Chennai, 600034, Tamil Nadu, India,JBM Inc., 3-1-14, Higashi Koiwa, Edogawa-Ku, Tokyo, 133-0052, Japan,Antony- Xavier Interdisciplinary Scholastics (AXIS), GN Corporation Co. Ltd., 3-8, Wakamatsu, Kofu, Yamanashi, 400-0866, Japan,Corresponding author. Centre for Advancing Clinical Research (CACR), University of Yamanashi, Faculty of Medicine, 3-8, Wakamatsu, Kofu, 400-0866, Yamanashi, Japan.
| |
Collapse
|
35
|
Roncada T, Bonithon R, Blunn G, Roldo M. Soft substrates direct stem cell differentiation into the chondrogenic lineage without the use of growth factors. J Tissue Eng 2022; 13:20417314221122121. [PMID: 36199979 PMCID: PMC9528007 DOI: 10.1177/20417314221122121] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/03/2022] [Indexed: 12/03/2022] Open
Abstract
Mesenchymal stem cells (MSCs) hold great promise for the treatment of cartilage related injuries. However, selectively promoting stem cell differentiation in vivo is still challenging. Chondrogenic differentiation of MSCs usually requires the use of growth factors that lead to the overexpression of hypertrophic markers. In this study, for the first time the effect of stiffness on MSC differentiation has been tested without the use of growth factors. Three-dimensional collagen and alginate scaffolds were developed and characterised. Stiffness significantly affected gene expression and ECM deposition. While, all hydrogels supported chondrogenic differentiation and allowed deposition of collagen type II and aggrecan, the 5.75 kPa hydrogel showed limited production of collagen type I compared to the other two formulations. These findings demonstrated for the first time that stiffness can guide MSCs differentiation without the use of growth factors within a tissue engineering scaffold suitable for the treatment of cartilage defects.
Collapse
Affiliation(s)
- Tosca Roncada
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Roxane Bonithon
- School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, UK
| | - Gordon Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Marta Roldo
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
- Marta Roldo, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth, PO1 2DT, UK.
| |
Collapse
|
36
|
Seo BB, Kwon Y, Kim J, Hong KH, Kim SE, Song HR, Kim YM, Song SC. Injectable polymeric nanoparticle hydrogel system for long-term anti-inflammatory effect to treat osteoarthritis. Bioact Mater 2022; 7:14-25. [PMID: 34466714 PMCID: PMC8377411 DOI: 10.1016/j.bioactmat.2021.05.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 12/04/2022] Open
Abstract
Treatment of osteoarthritis (OA) by administration of corticosteroids is a commonly used method in clinics using anti-inflammatory medicine. Oral administration or intra-articular injection of corticosteroids can reduce the pain and progress of cartilage degeneration, but they are usually insufficient to show local and long-term anti-inflammatory effects because of their fast clearance in the body. In this study, we suggest an injectable anti-OA drug depot system for sustained drug release that provides long-term effective therapeutic advantages. Amphiphilic poly(organophosphazene), which has temperature-dependent nanoparticle forming and sol-gel transition behaviors when dissolved in aqueous solution, was synthesized for triamcinolone acetonide (TCA) delivery. Because hydrophobic parts of the polymer can interact with hydrophobic parts of the TCA, the TCA was encapsulated into the self-assembled polymeric nanoparticles. The TCA-encapsulated polymeric nanoparticles (TePNs) were well dispersed in an aqueous solution below room temperature so that they can be easily injected as a sol state into an intra-articular region. However, the TePNs solution transforms immediately to a viscose 3D hydrogel like a synovial fluid in the intra-articular region via the conducted body temperature. An in vitro TCA release study showed sustained TCA release for six weeks. One-time injection of the TePN hydrogel system in an early stage of OA-induced rat model showed a great inhibition effect against further OA progression. The OA-induced knees completely recovered as a healthy cartilage without any abnormal symptoms.
Collapse
Affiliation(s)
- Bo-Bae Seo
- Center for Biomaterials, Korea Institute of Science & Technology, Seoul, 02792, South Korea
| | - Youngjoong Kwon
- Center for Biomaterials, Korea Institute of Science & Technology, Seoul, 02792, South Korea
| | - Jun Kim
- Center for Biomaterials, Korea Institute of Science & Technology, Seoul, 02792, South Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, South Korea
| | - Ki Hyun Hong
- Center for Biomaterials, Korea Institute of Science & Technology, Seoul, 02792, South Korea
| | - Sung-Eun Kim
- Department of Orthopedic Surgery and Rare Diseases Institute, Korea University Medical College Guro Hospital, Seoul, 08308, South Korea
| | - Hae-Ryong Song
- Department of Orthopedic Surgery and Rare Diseases Institute, Korea University Medical College Guro Hospital, Seoul, 08308, South Korea
| | - Young-Min Kim
- Center for Biomaterials, Korea Institute of Science & Technology, Seoul, 02792, South Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, South Korea
| | - Soo-Chang Song
- Center for Biomaterials, Korea Institute of Science & Technology, Seoul, 02792, South Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, South Korea
| |
Collapse
|
37
|
Arias C, Salazar LA. Autophagy and Polyphenols in Osteoarthritis: A Focus on Epigenetic Regulation. Int J Mol Sci 2021; 23:ijms23010421. [PMID: 35008847 PMCID: PMC8745146 DOI: 10.3390/ijms23010421] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 02/07/2023] Open
Abstract
Autophagy is an intracellular mechanism that maintains cellular homeostasis in different tissues. This process declines in cartilage due to aging, which is correlated with osteoarthritis (OA), a multifactorial and degenerative joint disease. Several studies show that microRNAs regulate different steps of autophagy but only a few of them participate in OA. Therefore, epigenetic modifications could represent a therapeutic opportunity during the development of OA. Besides, polyphenols are bioactive components with great potential to counteract diseases, which could reverse altered epigenetic regulation and modify autophagy in cartilage. This review aims to analyze epigenetic mechanisms that are currently associated with autophagy in OA, and to evaluate whether polyphenols are used to reverse the epigenetic alterations generated by aging in the autophagy pathway.
Collapse
Affiliation(s)
- Consuelo Arias
- Center of Molecular Biology and Pharmacogenetics, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile;
- Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile
| | - Luis A. Salazar
- Center of Molecular Biology and Pharmacogenetics, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile;
- Interuniversity Center for Healthy Aging (ICHA), Universidad de La Frontera, Temuco 4811230, Chile
- Correspondence: ; Tel.: +56-45-259-6724
| |
Collapse
|
38
|
Lee JS, Shim DW, Kang KY, Chae DS, Lee WS. Method Categorization of Stem Cell Therapy for Degenerative Osteoarthritis of the Knee: A Review. Int J Mol Sci 2021; 22:ijms222413323. [PMID: 34948119 PMCID: PMC8704290 DOI: 10.3390/ijms222413323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/05/2021] [Accepted: 12/08/2021] [Indexed: 01/02/2023] Open
Abstract
Current clinical applications of mesenchymal stem cell therapy for osteoarthritis lack consistency because there are no established criteria for clinical processes. We aimed to systematically organize stem cell treatment methods by reviewing the literature. The treatment methods used in 27 clinical trials were examined and reviewed. The clinical processes were separated into seven categories: cell donor, cell source, cell preparation, delivery methods, lesion preparation, concomitant procedures, and evaluation. Stem cell donors were sub-classified as autologous and allogeneic, and stem cell sources included bone marrow, adipose tissue, peripheral blood, synovium, placenta, and umbilical cord. Mesenchymal stem cells can be prepared by the expansion or isolation process and attached directly to cartilage defects using matrices or injected into joints under arthroscopic observation. The lesion preparation category can be divided into three subcategories: chondroplasty, microfracture, and subchondral drilling. The concomitant procedure category describes adjuvant surgery, such as high tibial osteotomy. Classification codes were assigned for each subcategory to provide a useful and convenient method for organizing documents associated with stem cell treatment. This classification system will help researchers choose more unified treatment methods, which will facilitate the efficient comparison and verification of future clinical outcomes of stem cell therapy for osteoarthritis.
Collapse
Affiliation(s)
- Jae Sun Lee
- Stem Cell Therapy Center, International St. Mary’s Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Korea;
| | - Dong Woo Shim
- Department of Orthopedic Surgery, International St. Mary’s Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Korea;
| | - Kyung-Yil Kang
- Department of Medicine, Catholic Kwandong Graduate School, Gangneung-si 25601, Korea;
| | - Dong-Sik Chae
- Department of Orthopedic Surgery, International St. Mary’s Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Korea;
- Correspondence: (D.-S.C.); (W.-S.L.); Tel.: +82-32-290-3878 (D.-S.C.); +82-2-2019-3410 (W.-S.L.); Fax: +82-32-290-3879 (D.-S.C.); +82-2-573-5393 (W.-S.L.)
| | - Woo-Suk Lee
- Department of Orthopedic Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06276, Korea
- Correspondence: (D.-S.C.); (W.-S.L.); Tel.: +82-32-290-3878 (D.-S.C.); +82-2-2019-3410 (W.-S.L.); Fax: +82-32-290-3879 (D.-S.C.); +82-2-573-5393 (W.-S.L.)
| |
Collapse
|
39
|
Xue K, Jiang Y, Zhang X, Wu J, Qi L, Liu K. Hypoxic ADSCs-derived EVs promote the proliferation and chondrogenic differentiation of cartilage stem/progenitor cells. Adipocyte 2021; 10:322-337. [PMID: 34224296 PMCID: PMC8259721 DOI: 10.1080/21623945.2021.1945210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/19/2022] Open
Abstract
Cartilage tissue engineering is a promising option for repairing cartilage defects, although harvesting a large number of seeding cells remains a major challenge. Cartilage stem/progenitor cells (CSPCs) seem to be a promising cell source. Hypoxic extracellular vesicles (EVs) may play a major role in cell-cell and tissue-tissue communication. In the current study, we aimed to evaluate the effect of hypoxic adipose-derived stem cells (ADSCs)-derived EVs on CSPCs proliferation and differentiation. The characteristics of ADSCs-derived EVs were identified, and proliferation, migration, and cartilage-related gene expression of CSPCs were measured with or without the presence of hypoxic ADSCs-derived EVs. SEM, histological staining, biochemical and biomechanical analysis was performed to evaluate the effect of hypoxic ADSCs-derived EVs on CSPCs in alginate hydrogel culture. The results indicated that the majority of ADSC-derived EVs exhibited a round-shaped or cup-shaped morphology with a diameter of 40-1000 nm and expressed CD9, CD63, and CD81. CSPCs migration and proliferation were enhanced by hypoxic ADSCs-derived EVs, which also increased the expression of cartilage-related genes. The hypoxic ADSCs-derived EVs induce CSPCs to produce significantly more cartilage matrix and proteoglycan. In conclusion, hypoxic ADSCs-derived EVs improved the proliferation and chondrogenic differentiation of CSPCs for cartilage tissue engineering.
Collapse
Affiliation(s)
- Ke Xue
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, PR China
| | - Yongkang Jiang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, PR China
| | - Xiaodie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, PR China
| | - Jun Wu
- Department of Orthopedics, The First People’s Hospital of Changzhou, Jiangsu Changzhou, China
| | - Lin Qi
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai, China
| | - Kai Liu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, PR China
| |
Collapse
|
40
|
Anand R, Nimi N, Sivadas VP, Merlin Rajesh Lal LP, Nair PD. Dual crosslinked pullulan-gelatin cryogel scaffold for chondrocyte-mediated cartilage repair: synthesis, characterization and in vitroevaluation. Biomed Mater 2021; 17. [PMID: 34700303 DOI: 10.1088/1748-605x/ac338b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/26/2021] [Indexed: 11/11/2022]
Abstract
Cryogels, a subset of hydrogels, have recently drawn attention for cartilage tissue engineering due to its inherent microporous architecture and good mechanical properties. In this study a dual crosslinked pullulan-gelatin cryogel (PDAG) scaffold was synthesized by crosslinking gelatin with oxidized pullulan by Schiff's base reaction followed by cryogelation. Chondrocytes seeded within the PDAG scaffolds and cultured for 21 din vitrodemonstrated enhanced cell proliferation, enhanced production of cartilage-specific extracellular matrix and up-regulated sulfated glycosaminoglycan without altering the articular chondrocyte phenotype. Quantitative reverse transcription-polymerase chain reaction-based gene expression studies, immunofluorescence, and histological studies demonstrated that the PDAG scaffold significantly enhanced the expression of chondrogenic marker genes such as type II collagen, aggrecan, and SOX9. Taken together, these results demonstrated that PDAG scaffold prepared by sequential Schiff's base reaction and cryogelation would be a promising cell-responsive scaffold for cartilage tissue engineering applications.
Collapse
Affiliation(s)
- Resmi Anand
- Division of Tissue Engineering and Regeneration Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012, India.,Inter University Centre for Biomedical Research and Super Speciality Hospital, Kottayam, Kerala 686009, India
| | - N Nimi
- Division of Tissue Engineering and Regeneration Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012, India
| | - V P Sivadas
- Division of Tissue Engineering and Regeneration Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012, India
| | - L P Merlin Rajesh Lal
- Division of Tissue Engineering and Regeneration Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012, India
| | - Prabha D Nair
- Division of Tissue Engineering and Regeneration Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012, India
| |
Collapse
|
41
|
Nguyen TPT, Li F, Shrestha S, Tuan RS, Thissen H, Forsythe JS, Frith JE. Cell-laden injectable microgels: Current status and future prospects for cartilage regeneration. Biomaterials 2021; 279:121214. [PMID: 34736147 DOI: 10.1016/j.biomaterials.2021.121214] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/19/2021] [Accepted: 10/20/2021] [Indexed: 12/15/2022]
Abstract
Injectable hydrogels have been employed extensively as versatile materials for cartilage regeneration due to their excellent biocompatibility, tunable structure, and ability to accommodate bioactive factors, as well as their ability to be locally delivered via minimally invasive injection to fill irregular defects. More recently, in vitro and in vivo studies have revealed that processing these materials to produce cell-laden microgels can enhance cell-cell and cell-matrix interactions and boost nutrient and metabolite exchange. Moreover, these studies have demonstrated gene expression profiles and matrix regeneration that are superior compared to conventional injectable bulk hydrogels. As cell-laden microgels and their application in cartilage repair are moving closer to clinical translation, this review aims to present an overview of the recent developments in this field. Here we focus on the currently used biomaterials and crosslinking strategies, the innovative fabrication techniques being used for the production of microgels, the cell sources used, the signals used for induction of chondrogenic differentiation and the resultant biological responses, and the ability to create three-dimensional, functional cartilage tissues. In addition, this review also covers the current clinical approaches for repairing cartilage as well as specific challenges faced when attempting the regeneration of damaged cartilage tissue. New findings related to the macroporous nature of the structures formed by the assembled microgel building blocks and the novel use of microgels in 3D printing for cartilage tissue engineering are also highlighted. Finally, we outline the challenges and future opportunities for employing cell-laden microgels in clinical applications.
Collapse
Affiliation(s)
- Thuy P T Nguyen
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Fanyi Li
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Surakshya Shrestha
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Rocky S Tuan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Helmut Thissen
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC, 3168, Australia
| | - John S Forsythe
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, VIC, 3800, Australia; Monash Institute of Medical Engineering, Monash University, Clayton, VIC, 3800, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Clayton, VIC 3800, Australia.
| | - Jessica E Frith
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, VIC, 3800, Australia; Monash Institute of Medical Engineering, Monash University, Clayton, VIC, 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Clayton, VIC 3800, Australia.
| |
Collapse
|
42
|
Characterization and miRNA Profiling of Extracellular Vesicles from Human Osteoarthritic Subchondral Bone Multipotential Stromal Cells (MSCs). Stem Cells Int 2021; 2021:7232773. [PMID: 34667479 PMCID: PMC8520657 DOI: 10.1155/2021/7232773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/26/2021] [Accepted: 08/19/2021] [Indexed: 12/25/2022] Open
Abstract
Osteoarthritis (OA) is a heterogeneous disease in which the cross-talk between the cells from different tissues within the joint is affected as the disease progresses. Extracellular vesicles (EVs) are known to have a crucial role in cell-cell communication by means of cargo transfer. Subchondral bone (SB) resident cells and its microenvironment are increasingly recognised to have a major role in OA pathogenesis. The aim of this study was to investigate the EV production from OA SB mesenchymal stromal cells (MSCs) and their possible influence on OA chondrocytes. Small EVs were isolated from OA-MSCs, characterized and cocultured with chondrocytes for viability and gene expression analysis, and compared to small EVs from MSCs of healthy donors (H-EVs). OA-EVs enhanced viability of chondrocytes and the expression of chondrogenesis-related genes, although the effect was marginally lower compared to that of the H-EVs. miRNA profiling followed by unsupervised hierarchical clustering analysis revealed distinct microRNA sets in OA-EVs as compared to their parental MSCs or H-EVs. Pathway analysis of OA-EV miRNAs showed the enrichment of miRNAs implicated in chondrogenesis, stem cells, or other pathways related to cartilage and OA. In conclusion, OA SB MSCs were capable of producing EVs that could support chondrocyte viability and chondrogenic gene expression and contained microRNAs implicated in chondrogenesis support. These EVs could therefore mediate the cross-talk between the SB and cartilage in OA potentially modulating chondrocyte viability and endogenous cartilage regeneration.
Collapse
|
43
|
Stem Cells in Autologous Microfragmented Adipose Tissue: Current Perspectives in Osteoarthritis Disease. Int J Mol Sci 2021; 22:ijms221910197. [PMID: 34638538 PMCID: PMC8508703 DOI: 10.3390/ijms221910197] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA) is a chronic debilitating disorder causing pain and gradual degeneration of weight-bearing joints with detrimental effects on cartilage volume as well as cartilage damage, generating inflammation in the joint structure. The etiology of OA is multifactorial. Currently, therapies are mainly addressing the physical and occupational aspects of osteoarthritis using pharmacologic pain treatment and/or surgery to manage the symptomatology of the disease with no specific regard to disease progression or prevention. Herein, we highlight alternative therapeutics for OA specifically considering innovative and encouraging translational methods with the use of adipose mesenchymal stem cells.
Collapse
|
44
|
Rahman S, Szojka ARA, Liang Y, Kunze M, Goncalves V, Mulet-Sierra A, Jomha NM, Adesida AB. Inability of Low Oxygen Tension to Induce Chondrogenesis in Human Infrapatellar Fat Pad Mesenchymal Stem Cells. Front Cell Dev Biol 2021; 9:703038. [PMID: 34381784 PMCID: PMC8350173 DOI: 10.3389/fcell.2021.703038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/14/2021] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Articular cartilage of the knee joint is avascular, exists under a low oxygen tension microenvironment, and does not self-heal when injured. Human infrapatellar fat pad-sourced mesenchymal stem cells (IFP-MSC) are an arthroscopically accessible source of mesenchymal stem cells (MSC) for the repair of articular cartilage defects. Human IFP-MSC exists physiologically under a low oxygen tension (i.e., 1-5%) microenvironment. Human bone marrow mesenchymal stem cells (BM-MSC) exist physiologically within a similar range of oxygen tension. A low oxygen tension of 2% spontaneously induced chondrogenesis in micromass pellets of human BM-MSC. However, this is yet to be demonstrated in human IFP-MSC or other adipose tissue-sourced MSC. In this study, we explored the potential of low oxygen tension at 2% to drive the in vitro chondrogenesis of IFP-MSC. We hypothesized that 2% O2 will induce stable chondrogenesis in human IFP-MSC without the risk of undergoing endochondral ossification at ectopic sites of implantation. METHODS Micromass pellets of human IFP-MSC were cultured under 2% O2 or 21% O2 (normal atmosphere O2) in the presence or absence of chondrogenic medium with transforming growth factor-β3 (TGFβ3) for 3 weeks. Following in vitro chondrogenesis, the resulting pellets were implanted in immunodeficient athymic nude mice for 3 weeks. RESULTS A low oxygen tension of 2% was unable to induce chondrogenesis in human IFP-MSC. In contrast, chondrogenic medium with TGFβ3 induced in vitro chondrogenesis. All pellets were devoid of any evidence of undergoing endochondral ossification after subcutaneous implantation in athymic mice.
Collapse
Affiliation(s)
- Samia Rahman
- Laboratory of Stem Cell Biology and Orthopedic Tissue Engineering, Division of Orthopedic Surgery and Surgical Research, Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Alexander R. A. Szojka
- Laboratory of Stem Cell Biology and Orthopedic Tissue Engineering, Division of Orthopedic Surgery and Surgical Research, Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Yan Liang
- Laboratory of Stem Cell Biology and Orthopedic Tissue Engineering, Division of Orthopedic Surgery and Surgical Research, Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Melanie Kunze
- Laboratory of Stem Cell Biology and Orthopedic Tissue Engineering, Division of Orthopedic Surgery and Surgical Research, Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Victoria Goncalves
- Laboratory of Stem Cell Biology and Orthopedic Tissue Engineering, Division of Orthopedic Surgery and Surgical Research, Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Aillette Mulet-Sierra
- Laboratory of Stem Cell Biology and Orthopedic Tissue Engineering, Division of Orthopedic Surgery and Surgical Research, Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Nadr M. Jomha
- Laboratory of Stem Cell Biology and Orthopedic Tissue Engineering, Division of Orthopedic Surgery and Surgical Research, Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Adetola B. Adesida
- Laboratory of Stem Cell Biology and Orthopedic Tissue Engineering, Division of Orthopedic Surgery and Surgical Research, Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Alberta Hospital, Edmonton, AB, Canada
| |
Collapse
|
45
|
Liu WB, Feng QJ, Li GS, Shen P, Li YN, Zhang FJ. Long non-coding RNA HOTAIRM1-1 silencing in cartilage tissue induces osteoarthritis through microRNA-125b. Exp Ther Med 2021; 22:933. [PMID: 34306202 PMCID: PMC8280714 DOI: 10.3892/etm.2021.10365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/11/2021] [Indexed: 11/29/2022] Open
Abstract
Aberrations in long noncoding RNA (lncRNA) expression have been recognized in numerous human diseases. In the present study, the of role the long noncoding RNA HOX antisense intergenic RNA myeloid 1 variant (HOTAIRM1-1) in regulating the pathological progression of osteoarthritis (OA) was investigated. The aberrant expression of HOTAIRM1-1 in OA was demonstrated, but the molecular mechanisms require further analysis. The aim of the present study was to explore the function of miR-125b in modulating chondrocyte viability and apoptosis, and to address the functional association between HOTAIRM1-1 and miR-125b as potential targets. A miR-125b inhibitor was used, which laid the foundation for the following investigation. The study confirmed that HOTAIRM1-1 and miR-125b are inversely expressed in chondrocytes. The expression of HOTAIRM1-1 was downregulated and the expression of miR-125b was upregulated in tissues from patients with OA. HOTAIRM1-1 directly interacted with miR-125b in chondrocytes. HOTAIRM1-1 knockdown was associated with chondrocyte proliferation and extracellular matrix degradation. Furthermore, miR-125b reversed the effect of HOTAIRM1-1 on cell proliferation and apoptosis. In conclusion, the present study indicates that the loss of HOTAIRM1-1 function leads to aberrant increases in the proliferation and apoptosis of chondrocytes. miR-125b may be a potential downstream mechanism that regulates the function of HOTAIRM1-1, and this finding provides a therapeutic strategy for OA.
Collapse
Affiliation(s)
- Wen-Bin Liu
- Department of Joint Surgery, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Qi-Jin Feng
- Department of Orthopedics, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300150, P.R. China
| | - Gui-Shi Li
- Department of Joint Surgery, Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Peng Shen
- Department of Rheumatology and Immunology, Tianjin First Center Hospital, Tianjin 300192, P.R. China
| | - Ya-Nan Li
- Department of Orthopedics, Tianjin Dongli Hospital, Tianjin 300300, P.R. China
| | - Fu-Jiang Zhang
- Department of Joint Surgery, Tianjin Hospital, Tianjin 300211, P.R. China
| |
Collapse
|
46
|
Lei J, He M, Xu L, He C, Li J, Wang W. Azilsartan prevented AGE-induced inflammatory response and degradation of aggrecan in human chondrocytes through inhibition of Sox4. J Biochem Mol Toxicol 2021; 35:e22827. [PMID: 34051020 DOI: 10.1002/jbt.22827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 02/04/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022]
Abstract
Advanced glycation end products (AGEs)-induced inflammation and degradation of aggrecan in human chondrocytes play an important role in the progression and development of osteoarthritis (OA). Azilsartan, an angiotensin II receptor antagonist, has been licensed for the treatment of high blood pressure. However, the effects of Azilsartan in OA and AGEs-induced damages in chondrocytes have not been previously reported. The injured chondrocytes model was established by incubating with 5 μmol/L AGEs. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide was used to evaluate the cell viability of treated SW1353 cells. The gene expression levels of interleukin-1α (IL-1α), tumor necrosis factor-β (TNF-β), IL-6, a disintegrin-like and metallopeptidase with thrombospondin type motif-4 (ADAMTS-4), ADAMTS-5, Aggrecan, and Sox-4 were evaluated using quantitative real-time polymerase chain reaction and their protein levels were determined using enzyme-linked immunosorbent assay or Western blot analysis. Mitogen-activated protein kinase p38 pathway was surveyed using phosp-p38 level and its specific inhibitor SB203580 was employed to block the p38 pathway. The overexpression of Sox4 plasmid was transfected into SW1353 cells to assess its regulation on ADAMTS-4 and ADAMTS-5. Azilsartan reduced AGEs-induced production of proinflammatory cytokines, such as IL-1α, TNF-β, and IL-6. Azilsartan prevented AGEs-induced expressions of ADAMTS-4 and ADAMTS-5 as well as the reduction of aggrecan. Mechanistically, AGEs treatment increased the expression of Sox4 in a dose-dependent manner. AGE treatment increased the level of phosphorylated p38. However, treatment with the p38 inhibitor SB203580 inhibited AGEs-induced expression of Sox4, suggesting that AGEs-induced expression of Sox4 is mediated by p38. Furthermore, Azilsartan suppressed AGEs-induced phosphorylation of p38 and expression of Sox4. Finally, the overexpression of Sox4 abolished the inhibitory effects of Azilsartan against the expressions of ADAMTS-4 and ADAMTS-5. Azilsartan treatment prevented AGEs-induced inflammatory response and degradation of aggrecan through inhibition of Sox4.
Collapse
Affiliation(s)
- Jie Lei
- Bone Injury Diagnosis and Treatment Center, Hubei Provincial Hospital Of TCM, Wuhan, Hubei, China
| | - Mengyin He
- Department of Radiology, Wuhan Traditional Chinese Medicine Hospital, Wuhan, Hubei, China
| | - Liangzhou Xu
- Department of Radiology, Wuhan Traditional Chinese Medicine Hospital, Wuhan, Hubei, China
| | - Chengjian He
- Bone Injury Diagnosis and Treatment Center, Hubei Provincial Hospital Of TCM, Wuhan, Hubei, China
| | - Jie Li
- Department of Orthopaedics, First Affiliated Hospital of Guangzhou Traditional Chinese, Medicine University, Guangzhou, Guangdong, China
| | - Wei Wang
- Bone Injury Diagnosis and Treatment Center, Hubei Provincial Hospital Of TCM, Wuhan, Hubei, China
| |
Collapse
|
47
|
Co CM, Izuagbe S, Zhou J, Zhou N, Sun X, Borrelli J, Tang L. Click chemistry-based pre-targeting cell delivery for cartilage regeneration. Regen Biomater 2021; 8:rbab018. [PMID: 34211730 DOI: 10.1093/rb/rbab018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/25/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022] Open
Abstract
A fraction of the OA patient population is affected by post-traumatic osteoarthritis (PTOA) following acute joint injuries. Stopping or reversing the progression of PTOA following joint injury could improve long-term functional outcomes, reduced disability, and medical costs. To more effectively treat articular cartilage injury, we have developed a novel cell-based therapy that involves the pre-targeting of apoptotic chondrocytes and the delivery of healthy, metabolically active chondrocytes using click chemistry. Specifically, a pre-targeting agent was prepared via conjugating apoptotic binding peptide (ApoPep-1) and trans-cyclooctene (TCO) onto polyethylene glycol (PEG) polymer carrier. The pre-targeting agent would be introduced to injured areas of articular cartilage, leading to the accumulation of TCO groups on the injured areas from actively binding to apoptotic chondrocytes. Subsequently, methyltetrazine (Tz)-bearing chondrocytes would be immobilized on the surface of TCO-coated injured cartilage via Tz-TCO click chemistry reaction. Using an ex vivo human cartilage explant PTOA model, the effectiveness of this new approach was evaluated. Our studies show that this novel approach (Tz-TCO click chemistry) significantly enhanced the immobilization of healthy and metabolically active chondrocytes to the areas of apoptotic chondrocytes. Histological analyses demonstrated that this treatment regimen would significantly reduce the area of cartilage degeneration and enhance ECM regeneration. The results support that Tz-TCO click chemistry-mediated cell delivery approach has great potential in clinical applications for targeting and treatment of cartilage injury.
Collapse
Affiliation(s)
- Cynthia M Co
- Department of Bioengineering, University of Texas at Arlington, PO Box 19138, Arlington, TX 76019, USA
| | - Samira Izuagbe
- Department of Bioengineering, University of Texas at Arlington, PO Box 19138, Arlington, TX 76019, USA
| | - Jun Zhou
- Department of Bioengineering, University of Texas at Arlington, PO Box 19138, Arlington, TX 76019, USA
| | - Ning Zhou
- Department of Radiology, University of Texas Southwestern Medical, Dallas, TX 75390, USA
| | - Xiankai Sun
- Department of Radiology, University of Texas Southwestern Medical, Dallas, TX 75390, USA
| | - Joseph Borrelli
- Department of Bioengineering, University of Texas at Arlington, PO Box 19138, Arlington, TX 76019, USA
| | - Liping Tang
- Department of Bioengineering, University of Texas at Arlington, PO Box 19138, Arlington, TX 76019, USA
| |
Collapse
|
48
|
Comparative analysis of human bone marrow mesenchymal stem cells, articular cartilage derived chondroprogenitors and chondrocytes to determine cell superiority for cartilage regeneration. Acta Histochem 2021; 123:151713. [PMID: 33894479 DOI: 10.1016/j.acthis.2021.151713] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Chondroprogenitors, a promising therapeutic modality in cell-based therapy, are routinely isolated from articular cartilage by fibronectin differential adhesion assay. However, there is paucity of information regarding their biological profile and the lack of a marker that can reliably distinguish them from cultured chondrocytes due to possible dedifferentiation. Since chondroprogenitors have been classified as mesenchymal stem cells(MSCs), the aim of our study was to compare bone marrow-MSCs, chondroprogenitors and chondrocytes, and assess superiority for cartilage repair. An additional objective was to also compare CD49b as a differentiating marker for isolating chondroprogenitors as a recent report demonstrated significantly high expression in the surfaceome of migratory articular chondroprogenitors. METHODS Bone marrow aspirate and articular cartilage was obtained from three osteoarthritic knee joints. Study arms included a) bone marrow-MSCs, b) chondroprogenitors, c) cultured chondrocytes, d) chondrocytes cultured with additional growth factors and e) CD49b + sorted chondroprogenitors. Assessment parameters included population doubling, surface expression for positive, negative MSC markers and potential markers of chondrogenesis (CD29, CD49e, CD49b, CD166 and CD146), RT-PCR for markers of chondrogenesis and hypertrophy and trilineage differentiation. RESULTS AND CONCLUSION Chondroprogenitors exhibited efficient chondrogenesis (SOX-9 and COL2A1) and significantly lower tendency for hypertrophy (RUNX2), which was also reflected in trilineage differentiation where progenitors displayed minimal calcified matrix, efficient glycosaminoglycan deposition and high collagen type II uptake. CD49b did not serve as a marker for isolation as sorted chondroprogenitors performed significantly poorer when compared to fibronectin assay derived cells. Emphasis on preclinical studies utilizing progenitors of higher purity is the future direction.
Collapse
|
49
|
Rajagopal K, Madhuri V. Comparing the chondrogenic potential of rabbit mesenchymal stem cells derived from the infrapatellar fat pad, periosteum & bone marrow. Indian J Med Res 2021; 154:732-742. [PMID: 35532591 PMCID: PMC9210523 DOI: 10.4103/ijmr.ijmr_93_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background & objectives: Rabbit model is commonly used to demonstrate the proof of concept in cartilage tissue engineering. However, limited studies have attempted to find an ideal source of rabbit mesenchymal stem cells (MSCs) for cartilage repair. This study aimed to compare the in vitro chondrogenic potential of rabbit MSCs isolated from three sources namely infrapatellar fat pad (IFP), periosteum (P) and bone marrow (BM). Methods: Rabbit MSCs from three sources were isolated and characterized using flow cytometry and multi-lineage differentiation assay. Cell proliferation was assessed using trypan blue dye exclusion test; in vitro chondrogenic potential was evaluated by histology and gene expression and the outcomes were compared amongst the three MSC sources. Results: MSCs from three sources shared similar morphology and expressed >99 per cent positive for CD44 and CD81 and <3 per cent positive for negative markers CD34, CD90 and human leukocyte antigen – DR isotype (HLA-DR). The BM-MSCs and IFP-MSCs showed significantly higher cell proliferation (P<0.001) than the P-MSCs from passage 4. Histologically, BM-MSCs formed a thicker cartilage pellet (P<0.01) with abundant matrix deposition than IFP and P-MSCs during chondrogenic differentiation. The collagen type 2 staining was significantly (P<0.05) higher in BM-MSCs than the other two sources. These outcomes were further confirmed by gene expression, where the BM-MSCs demonstrated significantly higher expression (P<0.01) of cartilage-specific markers (COL2A1, SOX9 and ACAN) with less hypertrophy. Interpretation & conclusions: This study demonstrated that BM-MSCs had superior chondrogenic potential and generated better cartilage than IFP and P-MSCs in rabbits. Thus, BM-MSCs remain a promising candidate for rabbit articular cartilage regeneration.
Collapse
Affiliation(s)
- Karthikeyan Rajagopal
- Department of Paediatric Orthopaedic; Centre for Stem Cell Research, Christian Medical College, Vellore, Tamil Nadu, India
| | - Vrisha Madhuri
- Department of Paediatric Orthopaedic; Centre for Stem Cell Research, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
50
|
Vinod E, Padmaja K, Kachroo U. Effect of human articular chondroprogenitor derived conditioned media on chondrogenic potential of bone marrow derived mesenchymal stromal cells. JOURNAL OF ORTHOPAEDICS, TRAUMA AND REHABILITATION 2021. [DOI: 10.1177/22104917211006885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Current research in cartilage repair is focusing on the use of soluble factors released by cells during expansion, either as stand-alone therapy or as conditioned media (CM) supplements to optimize cellular phenotype for in-vivo transplantation. The present study aimed at utilizing spent media from cultured human articular cartilage derived chondroprogenitors and assessing their influence on bone marrow mesenchymal stem cell (BM-MSC) growth and phenotype. Methodology: CM was collected from passage 2 chondroprogenitors and evaluated for latent TGFβ1 levels. Passage 3 BM-MSCs were divided into two groups and cultured with either a) standard expansion medium (EM-group) or b) EM supplemented with 50% CM (CCM-group). At sub-confluence both groups were assessed for population doubling, migration assay, cell surface markers, gene expression for chondrogenic and hypertrophy markers. Additionally, pellet cultures were subjected to chondrogenic differentiation and analyzed by Alcian blue stain. Results: On analysis of proliferation and migration, CCM-group showed comparable results to EM in terms of population doubling and cell movement toward scratched area. Similarly, use of spent medium did not affect the surface protein or gene expression profile of BM-MSCs with similar flow cytometric and mRNA results seen in both groups. Glycosaminoglycan deposition (Alcian blue) was seen in the CCM-group, comparable to the EM-group. Conclusion: This preliminary report provided valuable information on the influence of unfractionated CCM on BM-MSC characteristics which may be further optimized for cartilage regeneration by the use of purified components such as exosomes, micro-vesicles, and concentrated trophic factors in future.
Collapse
Affiliation(s)
- Elizabeth Vinod
- Department of Physiology, Christian Medical College, Vellore, India
- Centre for Stem Cell Research, Christian Medical College, Vellore, India
| | - Kawin Padmaja
- Department of Physiology, Christian Medical College, Vellore, India
| | - Upasana Kachroo
- Department of Physiology, Christian Medical College, Vellore, India
| |
Collapse
|