1
|
Abstract
Experimental trials in organisms ranging from yeast to humans have shown that various forms of reducing food intake (caloric restriction) appear to increase both overall and healthy lifespan, delaying the onset of disease and slowing the progression of biomarkers of aging. The gut microbiota is considered one of the key environmental factors strongly contributing to the regulation of host health. Perturbations in the composition and activity of the gut microbiome are thought to be involved in the emergence of multiple diseases. Indeed, many studies investigating gut microbiota have been performed and have shown strong associations between specific microorganisms and metabolic diseases including overweight, obesity, and type 2 diabetes mellitus as well as specific gastrointestinal disorders, neurodegenerative diseases, and even cancer. Dietary interventions known to reduce inflammation and improve metabolic health are potentiated by prior fasting. Inversely, birth weight differential host oxidative phosphorylation response to fasting implies epigenetic control of some of its effector pathways. There is substantial evidence for the efficacy of fasting in improving insulin signaling and blood glucose control, and in reducing inflammation, conditions for which, additionally, the gut microbiota has been identified as a site of both risk and protective factors. Accordingly, human gut microbiota, both in symbiont and pathobiont roles, have been proposed to impact and mediate some health benefits of fasting and could potentially affect many of these diseases. While results from small-N studies diverge, fasting consistently enriches widely recognized anti-inflammatory gut commensals such as Faecalibacterium and other short-chain fatty acid producers, which likely mediates some of its health effects through immune system and barrier function impact.
Collapse
Affiliation(s)
- Sofia K Forslund
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Berlin, Germany.,Structural and Computational Biology Unit, EMBL, Heidelberg, Germany
| |
Collapse
|
2
|
Bhoumik S, Rizvi SI. Anti‐aging effects of intermittent fasting: a potential alternative to calorie restriction? Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00770-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
3
|
Kökten T, Hansmannel F, Ndiaye NC, Heba AC, Quilliot D, Dreumont N, Arnone D, Peyrin-Biroulet L. Calorie Restriction as a New Treatment of Inflammatory Diseases. Adv Nutr 2021; 12:1558-1570. [PMID: 33554240 PMCID: PMC8321869 DOI: 10.1093/advances/nmaa179] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/16/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Immoderate calorie intake coupled with a sedentary lifestyle are major determinants of health issues and inflammatory diseases in modern society. The balance between energy consumption and energy expenditure is critical for longevity. Excessive energy intake and adiposity cause systemic inflammation, whereas calorie restriction (CR) without malnutrition, exerts a potent anti-inflammatory effect. The objective of this review was to provide an overview of different strategies used to reduce calorie intake, discuss physiological mechanisms by which CR might lead to improved health outcomes, and summarize the present knowledge about inflammatory diseases. We discuss emerging data of observational studies and randomized clinical trials on CR that have been shown to reduce inflammation and improve human health.
Collapse
Affiliation(s)
- Tunay Kökten
- Université de Lorraine, Inserm U1256 NGERE (Nutrition—Genetics and Exposure to Environmental Risks), Nancy, France
| | - Franck Hansmannel
- Université de Lorraine, Inserm U1256 NGERE (Nutrition—Genetics and Exposure to Environmental Risks), Nancy, France
| | - Ndeye Coumba Ndiaye
- Université de Lorraine, Inserm U1256 NGERE (Nutrition—Genetics and Exposure to Environmental Risks), Nancy, France
| | - Anne-Charlotte Heba
- Université de Lorraine, Inserm U1256 NGERE (Nutrition—Genetics and Exposure to Environmental Risks), Nancy, France
| | - Didier Quilliot
- Université de Lorraine, Inserm U1256 NGERE (Nutrition—Genetics and Exposure to Environmental Risks), Nancy, France
- Université de Lorraine, Centre Hospitalier Régional Universitaire (CHRU)-Nancy, Department of Diabetology-Endocrinology-Nutrition, Nancy, France
| | - Natacha Dreumont
- Université de Lorraine, Inserm U1256 NGERE (Nutrition—Genetics and Exposure to Environmental Risks), Nancy, France
| | - Djésia Arnone
- Université de Lorraine, Inserm U1256 NGERE (Nutrition—Genetics and Exposure to Environmental Risks), Nancy, France
| | - Laurent Peyrin-Biroulet
- Université de Lorraine, Inserm U1256 NGERE (Nutrition—Genetics and Exposure to Environmental Risks), Nancy, France
- Université de Lorraine, Centre Hospitalier Régional Universitaire (CHRU)-Nancy, Department of Gastroenterology, Nancy, France
| |
Collapse
|
4
|
Harding S. Intermittent Fasting: Clinical Considerations. J Nurse Pract 2021. [DOI: 10.1016/j.nurpra.2021.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Galetti V, Brnic M, Lotin B, Frigeri M. Observational Study of Lipid Profile and C-Reactive Protein after a Seven-Day Fast. Nutrients 2021; 13:nu13010255. [PMID: 33477356 PMCID: PMC7830333 DOI: 10.3390/nu13010255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/02/2023] Open
Abstract
Fasting is becoming an increasingly popular practice. Nevertheless, its clinical benefits and possible inconveniences remain limitedly evaluated. We observed the effects of a seven-day fast conducted in a non-medical center located in the Swiss Alps. Clinical parameters were measured on the first and last day of fasting (D1 and D7), and two months later (D60). Among the 40 participants, blood analyses were done on 25 persons with an increased metabolic risk, with the primary goal of assessing the lasting effect on low-density lipoprotein (LDL) cholesterol. By comparing D60 with D1, high-density lipoprotein cholesterol (HDL) (+0.15 mmol/L) and insulin-like growth factor-1 (IGF-1) (+2.05 mmol/L) increased (both p < 0.009), all other blood parameters (LDL, glucose, total cholesterol, triglycerides, C-reactive protein (CRP)) did not change; weight (−0.97 kg) and hearth rate (−7.31 min−1) decreased (both p < 0.006). By comparing D7 with D1, total cholesterol (+0.44 mmol/L), triglycerides (+0.37 mmol/L) and CRP (+3.37 mg/L) increased (all p < 0.02). The lack of LDL variation at D60 may be due to the low metabolic risk level of the participants. The increase of total cholesterol, triglycerides and CRP at D7 warrants studies to understand whether such fluctuations represent a stress reaction to the fasting state, which may vary in different fasting types.
Collapse
Affiliation(s)
- Valeria Galetti
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland;
- VMMT Research, 6950 Tesserete, Switzerland;
| | - Marica Brnic
- VMMT Research, 6950 Tesserete, Switzerland;
- Department of Health, Swiss Distance University of Applied Sciences (Fernfachhochschule Schweiz—FFHS), 3900 Brig, Switzerland
| | - Benjamin Lotin
- Centre Interlude Bien-Être, 1873 Val d’Illiez, Switzerland;
| | - Mauro Frigeri
- VMMT Research, 6950 Tesserete, Switzerland;
- Fondazione Hospice Ticino, 6900 Lugano, Switzerland
- Correspondence:
| |
Collapse
|
6
|
Caloric restriction and IGF-I administration promote rabbit fecundity: Possible interrelationships and mechanisms of action. Theriogenology 2017; 90:252-259. [DOI: 10.1016/j.theriogenology.2016.12.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/06/2016] [Accepted: 12/13/2016] [Indexed: 11/24/2022]
|
7
|
Chung H, Chou W, Sears DD, Patterson RE, Webster NJG, Ellies LG. Time-restricted feeding improves insulin resistance and hepatic steatosis in a mouse model of postmenopausal obesity. Metabolism 2016; 65:1743-1754. [PMID: 27832862 PMCID: PMC5123758 DOI: 10.1016/j.metabol.2016.09.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 09/07/2016] [Accepted: 09/12/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND Menopause is associated with significant hormonal changes that result in increased total body fat and abdominal fat, amplifying the risk for metabolic syndrome and diseases such as diabetes, cardiovascular disease and cancer in postmenopausal women. Intermittent fasting regimens hold significant health benefit promise for obese humans, however, regimens that include extreme daytime calorie restriction or daytime fasting are generally associated with hunger and irritability, hampering long-term compliance and adoption in the clinical setting. Time-restricted feeding (TRF), a regimen allowing eating only during a specific period in the normal circadian feeding cycle, without calorie restriction, may increase compliance and provide a more clinically viable method for reducing the detrimental metabolic consequences associated with obesity. METHODS We tested TRF as an intervention in a mouse model of postmenopausal obesity. Metabolic parameters were measured using Clinical Laboratory Animal Monitoring System (CLAMS) and we carried out glucose tolerance tests. We also stained liver sections with oil red O to examine steatosis and measured gene expression related to gluconeogenesis. RESULTS Preexisting metabolic disease was significantly attenuated during 7 weeks of TRF. Despite having access to the same high fat diet (HFD) as ad libitum fed (ALF) mice, TRF mice experienced rapid weight loss followed by a delayed improvement in insulin resistance and a reduced severity of hepatic steatosis by having access to the HFD for only 8h during their normal nocturnal feeding period. The lower respiratory exchange ratio in the TRF group compared with the ALF group early in the dark phase suggested that fat was the predominant fuel source in the TRF group and correlated with gene expression analyses that suggested a switch from gluconeogenesis to ketogenesis. In addition, TRF mice were more physically active than ALF fed mice. CONCLUSIONS Our data support further analysis of TRF as a clinically viable form of intermittent fasting to improve metabolic health due to obesity.
Collapse
Affiliation(s)
- Heekyung Chung
- Department of Medicine, Division of Endocrinology and Metabolism, UC San Diego, La Jolla, CA 92093, USA
| | - Winjet Chou
- Department of Medicine, Division of Endocrinology and Metabolism, UC San Diego, La Jolla, CA 92093, USA
| | - Dorothy D Sears
- Department of Medicine, Division of Endocrinology and Metabolism, UC San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, UC San Diego, La Jolla, CA 92093, USA; Department of Family Medicine and Public Health, UC San Diego, La Jolla, CA 92093, USA
| | - Ruth E Patterson
- Moores Cancer Center, UC San Diego, La Jolla, CA 92093, USA; Department of Family Medicine and Public Health, UC San Diego, La Jolla, CA 92093, USA
| | - Nicholas J G Webster
- Department of Medicine, Division of Endocrinology and Metabolism, UC San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, UC San Diego, La Jolla, CA 92093, USA; VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Lesley G Ellies
- Moores Cancer Center, UC San Diego, La Jolla, CA 92093, USA; Department of Pathology, UC San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
8
|
Landgrave-Gómez J, Mercado-Gómez OF, Vázquez-García M, Rodríguez-Molina V, Córdova-Dávalos L, Arriaga-Ávila V, Miranda-Martínez A, Guevara-Guzmán R. Anticonvulsant Effect of Time-Restricted Feeding in a Pilocarpine-Induced Seizure Model: Metabolic and Epigenetic Implications. Front Cell Neurosci 2016; 10:7. [PMID: 26858603 PMCID: PMC4730902 DOI: 10.3389/fncel.2016.00007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 01/11/2016] [Indexed: 01/23/2023] Open
Abstract
A new generation of antiepileptic drugs has emerged; however, one-third of epilepsy patients do not properly respond to pharmacological treatments. The purpose of the present study was to investigate whether time-restricted feeding (TRF) has an anticonvulsant effect and whether this restrictive diet promotes changes in energy metabolism and epigenetic modifications in a pilocarpine-induced seizure model. To resolve our hypothesis, one group of rats had free access to food and water ad libitum (AL) and a second group underwent a TRF schedule. We used the lithium-pilocarpine model to induce status epilepticus (SE), and behavioral seizure monitoring was analyzed. Additionally, an electroencephalography (EEG) recording was performed to verify the effect of TRF on cortical electrical activity after a pilocarpine injection. For biochemical analysis, animals were sacrificed 24 h after SE and hippocampal homogenates were used to evaluate the proteins related to metabolism and chromatin structure. Our results showed that TRF had an anticonvulsant effect as measured by the prolonged latency of forelimb clonus seizure, a decrease in the seizure severity score and fewer animals reaching SE. Additionally, the power of the late phase EEG recordings in the AL group was significantly higher than the TRF group. Moreover, we found that TRF is capable of inducing alterations in signaling pathways that regulate energy metabolism, including an increase in the phosphorylation of AMP dependent kinase (AMPK) and a decrease in the phosphorylation of Akt kinase. Furthermore, we found that TRF was able to significantly increase the beta hydroxybutyrate (β-HB) concentration, an endogenous inhibitor of histone deacetylases (HDACs). Finally, we found a significant decrease in HDAC activity as well as an increase in acetylation on histone 3 (H3) in hippocampal homogenates from the TRF group. These findings suggest that alterations in energy metabolism and the increase in β-HB mediated by TRF may inhibit HDAC activity, thus increasing histone acetylation and producing changes in the chromatin structure, which likely facilitates the transcription of a subset of genes that confer anticonvulsant activity.
Collapse
Affiliation(s)
- Jorge Landgrave-Gómez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México México, DF, Mexico
| | | | - Mario Vázquez-García
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México México, DF, Mexico
| | - Víctor Rodríguez-Molina
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México México, DF, Mexico
| | - Laura Córdova-Dávalos
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México México, DF, Mexico
| | - Virginia Arriaga-Ávila
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México México, DF, Mexico
| | - Alfredo Miranda-Martínez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México México, DF, Mexico
| | - Rosalinda Guevara-Guzmán
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México México, DF, Mexico
| |
Collapse
|