1
|
Naamneh Elzenaty R, Martinez de Lapiscina I, Kouri C, Sauter KS, Sommer G, Castaño L, Flück CE. Characterization of 35 Novel NR5A1/SF-1 Variants Identified in Individuals With Atypical Sexual Development: The SF1next Study. J Clin Endocrinol Metab 2025; 110:e675-e693. [PMID: 38623954 PMCID: PMC11834716 DOI: 10.1210/clinem/dgae251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/14/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
CONTEXT Steroidogenic factor 1 (NR5A1/SF-1) is a nuclear receptor that regulates sex development, steroidogenesis, and reproduction. Genetic variants in NR5A1/SF-1 are common among differences of sex development (DSD) and associate with a wide range of phenotypes, but their pathogenic mechanisms remain unclear. OBJECTIVE Novel, likely disease-causing NR5A1/SF-1 variants from the SF1next cohort of individuals with DSD were characterized to elucidate their pathogenic effect. METHODS Different in silico tools were used to predict the impact of novel NR5A1/SF-1 variants on protein function. An extensive literature review was conducted to compare and select the best functional studies for testing the pathogenic effect of the variants in a classic cell culture model. The missense NR5A1/SF-1 variants were tested on the promoter luciferase reporter vector -152CYP11A1_pGL3 in HEK293T cells and assessed for their cytoplasmic/nuclear localization by Western blot. RESULTS Thirty-five novel NR5A1/SF-1 variants were identified in the SF1next cohort. Seventeen missense NR5A1/SF-1 variants were functionally tested. Transactivation assays showed reduced activity for 40% of the variants located in the DNA binding domain and variable activity for variants located elsewhere. Translocation assessment revealed 3 variants (3/17) with affected nuclear translocation. No clear genotype-phenotype, structure-function correlation was found. CONCLUSION Genetic analyses and functional assays do not explain the observed wide phenotype of individuals with these novel NR5A1/SF-1 variants. In 9 individuals, additional likely disease-causing variants in other genes were found, strengthening the hypothesis that the broad phenotype of DSD associated with NR5A1/SF-1 variants may be caused by an oligogenic mechanism.
Collapse
Affiliation(s)
- Rawda Naamneh Elzenaty
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Idoia Martinez de Lapiscina
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Research into the Genetics and Control of Diabetes and other Endocrine Disorders, Biobizkaia Health Research Institute, Cruces University Hospital, 48903 Barakaldo, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Rare Endocrine Conditions, Endo-ERN, 1105 Amsterdam, The Netherlands
| | - Chrysanthi Kouri
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Kay-Sara Sauter
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Grit Sommer
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Luis Castaño
- Research into the Genetics and Control of Diabetes and other Endocrine Disorders, Biobizkaia Health Research Institute, Cruces University Hospital, 48903 Barakaldo, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Rare Endocrine Conditions, Endo-ERN, 1105 Amsterdam, The Netherlands
- Department of Pediatric Endocrinology, Cruces University Hospital, 48903 Barakaldo, Spain
- Department of Pediatrics, University of the Basque Country (UPV-EHU), 48903 Leioa, Spain
| | - Christa E Flück
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
| |
Collapse
|
2
|
Lafraoui I, Heddar A, Cantalloube A, Braham I, Peigné M, Beneteau C, Gricourt S, Poirsier C, Legrand S, Stoeva R, Metayer-Amelot L, Lobersztajn A, Lebrun S, Gruchy N, Abdennebi I, Cedrin-Durnerin I, Fernandez H, Luton D, Torre A, Zagdoun L, Chevalier N, Khrouf M, Mahmoud K, Epelboin S, Catteau-Jonard S, Misrahi M. Genetic Landscape of a Cohort of 120 Patients with Diminished Ovarian Reserve: Correlation with Infertility. Int J Mol Sci 2024; 25:11915. [PMID: 39595984 PMCID: PMC11593603 DOI: 10.3390/ijms252211915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Diminished ovarian reserve (DOR) and primary ovarian insufficiency (POI) are major causes of female infertility. We recently found a monogenic etiology in 29.3% of POI, leading to personalized medicine. The genetic landscape of DOR is unknown. A prospective study (2018-2023) of an international cohort of 120 patients with unexplained DOR was performed using a large custom targeted next-generation sequencing panel including all known POI-causing genes. The diagnostic yield, based on the American College of Medical Genetics, was 24, 2%. Genes belong to different pathways: metabolism and mitochondria (29.7%), follicular growth (24.3%), DNA repair/meiosis (18.9%), aging (16.2%), ovarian development (8.1%), and autophagy (2.7%). Five genes were recurrently found: LMNA, ERCC6, SOX8, POLG, and BMPR1B. Six genes identified in single families with POI were involved in DOR, GNAS, TGFBR3, XPNPEP2, EXO1, BNC1, ATG, highlighting their role in maintaining ovarian reserve. In our cohort, 26 pregnancies were recorded, but no pregnancy was observed when meiosis/DNA repair genes were involved, suggesting severely impaired oocyte quality. Additional studies should confirm these preliminary results. This study with a large NGS panel defines the genetic landscape of a large cohort of DOR. It supports routine genetic diagnosis. Genetics could be a biomarker predicting infertility and progression to POI.
Collapse
Affiliation(s)
- Imène Lafraoui
- Unité de Génétique Moléculaire des Maladies Métaboliques et de la Reproduction, Hôpital Bicêtre, Faculté de Médecine Paris Saclay, INSERM U1193, 94275 Le Kremlin-Bicêtre, France; (I.L.); (A.H.)
- Laboratoire de Biologie Moléculaire National de Référence-LBMR Pour les Infertilités Génétiques Chez la Femme et l’Homme, Hôpitaux Universitaires Paris Saclay, 94275 Le Kremlin Bicêtre, France
| | - Abdelkader Heddar
- Unité de Génétique Moléculaire des Maladies Métaboliques et de la Reproduction, Hôpital Bicêtre, Faculté de Médecine Paris Saclay, INSERM U1193, 94275 Le Kremlin-Bicêtre, France; (I.L.); (A.H.)
- Laboratoire de Biologie Moléculaire National de Référence-LBMR Pour les Infertilités Génétiques Chez la Femme et l’Homme, Hôpitaux Universitaires Paris Saclay, 94275 Le Kremlin Bicêtre, France
| | - Adèle Cantalloube
- Service de Gynécologie-Obstétrique, Hôpital Tenon, Hôpitaux Universitaires Paris Centre, 75014 Paris, France; (A.C.); (S.G.); (S.E.)
| | - Inès Braham
- Service d’Endocrinologie, Diabétologie et Médecine de la Reproduction, CHU de Nice, 06000 Nice, France; (I.B.); (N.C.)
| | - Maëliss Peigné
- Service de Médecine de la Reproduction et Préservation de la Fertilité, Hôpital Jean-Verdier, Université Sorbonne Paris Nord, 93430 Bondy, France; (M.P.); (I.C.-D.)
| | - Claire Beneteau
- Service de Génétique Médicale, CHU de Nantes, 44000 Nantes, France;
| | - Solenne Gricourt
- Service de Gynécologie-Obstétrique, Hôpital Tenon, Hôpitaux Universitaires Paris Centre, 75014 Paris, France; (A.C.); (S.G.); (S.E.)
| | - Claire Poirsier
- Departement de Genetique, Centre Hospitalier Universitaire de Reims, 51092 Reims, France;
| | - Stéphanie Legrand
- Centre de Fertilité, Clinique de l’Atlantique, 17138 La Rochelle, France;
| | - Radka Stoeva
- Laboratoire de Génétique Médicale et Cytogénétique, CH Le Mans, 72037 Le Mans, France;
| | - Laure Metayer-Amelot
- Service d’Endocrinologie et Médecine de la Reproduction, CH Le Mans, 72037 Le Mans, France;
| | - Annina Lobersztajn
- Centre de la Fertilité—Paris Est, Nogent sur Marne, 94130 Nogent-sur-Marne, France;
| | - Soizic Lebrun
- Service de Génétique, FHU GenOMedS, CHRU de Tours, 37000 Tours, France;
| | - Nicolas Gruchy
- EA 7450 BioTARGen, FHU G4 Genomics, Service de Génétique Clinique, Departement de Genetique, CHU Côte de Nacre, Université de Caen Normandie UNICAEN, 14000 Caen, France;
| | - Inès Abdennebi
- Centre d’Aide Médicale à la Procréation, Centre Hospitalier Intercommunal de Créteil, 94000 Créteil, France;
| | - Isabelle Cedrin-Durnerin
- Service de Médecine de la Reproduction et Préservation de la Fertilité, Hôpital Jean-Verdier, Université Sorbonne Paris Nord, 93430 Bondy, France; (M.P.); (I.C.-D.)
| | - Hervé Fernandez
- Service de Gynécologie-Obstétrique, Hôpital Bicêtre, Université Paris Saclay, 94270 Le Kremlin-Bicêtre, France; (H.F.); (D.L.)
| | - Dominique Luton
- Service de Gynécologie-Obstétrique, Hôpital Bicêtre, Université Paris Saclay, 94270 Le Kremlin-Bicêtre, France; (H.F.); (D.L.)
| | - Antoine Torre
- Centre d’Assistance Médicale à la Procréation Clinico-Biologique, Centre Hospitalier Sud Francilien Corbeil-Essonnes, 91100 Corbeil-Essonnes, France;
| | - Léonore Zagdoun
- Service de Diabétologie et Endocrinologie, Centre Hospitalier de Mont de Marsan et Pays des Sources, 40024 Mont de Marsan, France;
| | - Nicolas Chevalier
- Service d’Endocrinologie, Diabétologie et Médecine de la Reproduction, CHU de Nice, 06000 Nice, France; (I.B.); (N.C.)
| | - Mohamed Khrouf
- Centre FERTILLIA de Médecine de la Reproduction-Clinique la Rose, Tunis 1053, Tunisia; (M.K.); (K.M.)
| | - Khaled Mahmoud
- Centre FERTILLIA de Médecine de la Reproduction-Clinique la Rose, Tunis 1053, Tunisia; (M.K.); (K.M.)
| | - Sylvie Epelboin
- Service de Gynécologie-Obstétrique, Hôpital Tenon, Hôpitaux Universitaires Paris Centre, 75014 Paris, France; (A.C.); (S.G.); (S.E.)
| | - Sophie Catteau-Jonard
- Service de Gynécologie Endocrinienne, CHU de Lille, Hôpital Jeanne-de-Flandre, 59000 Lille, France;
| | - Micheline Misrahi
- Unité de Génétique Moléculaire des Maladies Métaboliques et de la Reproduction, Hôpital Bicêtre, Faculté de Médecine Paris Saclay, INSERM U1193, 94275 Le Kremlin-Bicêtre, France; (I.L.); (A.H.)
- Laboratoire de Biologie Moléculaire National de Référence-LBMR Pour les Infertilités Génétiques Chez la Femme et l’Homme, Hôpitaux Universitaires Paris Saclay, 94275 Le Kremlin Bicêtre, France
| |
Collapse
|
3
|
Kouri C, Jia RY, Kentistou KA, Gardner EJ, Perry JRB, Flück CE, Ong KK. Population-Based Study of Rare Coding Variants in NR5A1/SF-1. J Endocr Soc 2024; 8:bvae178. [PMID: 39479520 PMCID: PMC11521259 DOI: 10.1210/jendso/bvae178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Indexed: 11/02/2024] Open
Abstract
Background Steroidogenic Factor 1/Nuclear Receptor Subfamily 5 Group A Member 1 (SF-1/NR5A1) is critical for the development and function of sex organs, influencing steroidogenesis and reproduction. While rare deleterious NR5A1/SF-1 variants have been identified in individuals with various differences of sex development (DSD), primary ovarian insufficiency, and infertility, their impact on the general population remains unclear. Methods We analyzed health records and exome sequencing data from up to 420 162 individuals (227 858 women) from the UK Biobank study to assess the impact of rare (frequency < 0.1%) predicted deleterious NR5A1/SF-1 variants on age at menopause and 26 other traits. Results No carriers of rare protein truncating variants in NR5A1/SF-1 were identified. We found that the previously reported association of rare deleterious missense NR5A1/SF-1 variants with earlier age at menopause is driven by variants in the DNA binding domain (DBD) and ligand binding domain (LBD) (combined test: beta = -2.36 years/allele, [95% CI: 3.21, -1.51], N = 107 carriers, P = 4.6 × 10-8). Carriers also had a higher risk of adult obesity (OR = 1.061, [95% CI: 1.003, 1.104], N = 344, P = .015), particularly among women (OR = 1.095 [95% CI: 1.034, 1.163, P = 3.87 × 10-3], N = 176), but not men (OR = 1.019, [95% CI: 0.955, 1.088], P = .57, N = 168). Conclusion Deleterious missense variants in the DBD and LBD likely disrupt NR5A1/SF-1 function. This study broadens the relevance of deleterious NR5A1/SF-1 variants beyond rare DSDs, suggesting the need for extended phenotyping and monitoring of affected individuals.
Collapse
Affiliation(s)
- Chrysanthi Kouri
- Department of Pediatrics, Pediatric Endocrinology, Diabetology and Metabolism, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Raina Y Jia
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Katherine A Kentistou
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Eugene J Gardner
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - John R B Perry
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Christa E Flück
- Department of Pediatrics, Pediatric Endocrinology, Diabetology and Metabolism, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Ken K Ong
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
- Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
4
|
Touraine P, Chabbert-Buffet N, Plu-Bureau G, Duranteau L, Sinclair AH, Tucker EJ. Premature ovarian insufficiency. Nat Rev Dis Primers 2024; 10:63. [PMID: 39266563 DOI: 10.1038/s41572-024-00547-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/31/2024] [Indexed: 09/14/2024]
Abstract
Premature ovarian insufficiency (POI) is a cause of infertility and endocrine dysfunction in women, defined by loss of normal, predictable ovarian activity before the age of 40 years. POI is clinically characterized by amenorrhoea (primary or secondary) with raised circulating levels of follicle-stimulating hormone. This condition can occur due to medical interventions such as ovarian surgery or cytotoxic cancer therapy, metabolic and lysosomal storage diseases, infections, chromosomal anomalies and autoimmune diseases. At least 1 in 100 women is affected by POI, including 1 in 1,000 before the age of 30 years. Substantial evidence suggests a genetic basis to POI. However, the cause of idiopathic POI remains unknown in most patients, indicating that gene variants associated with this condition remain to be discovered. Over the past 10 years, tremendous progress has been made in our knowledge of genes involved in POI. Genetic approaches in diagnosis are important as they enable patients with familial POI to be identified, with the opportunity for oocyte preservation. Moreover, genetic approaches could provide a better understanding of disease mechanisms, which will ultimately aid the development of improved treatments.
Collapse
Affiliation(s)
- Philippe Touraine
- Department of Endocrinology and Reproductive Medicine, AP-HP Pitié Salpêtrière Hospital, Sorbonne Université Médecine, Paris, France.
- Inserm U1151 INEM, Necker Hospital, Paris, France.
| | - Nathalie Chabbert-Buffet
- Department of Obstetrics, Gynecology and Reproductive Medicine, Tenon Hospital, AP-HP Sorbonne Université, Paris, France
- INSERM UMR S 938, CDR St Antoine, Paris, France
| | - Genevieve Plu-Bureau
- Department of Medical Gynecology, AP-HP Port Royal-Cochin Hospital, Université Paris Cité, Paris, France
- U1151 EPOPEE Team, Paris, France
| | - Lise Duranteau
- Department of Medical Gynecology, Bicêtre Hospital, AP-HP Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Andrew H Sinclair
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Elena J Tucker
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
5
|
Zhu Q, Ma H, Wang J, Liang X. Understanding the Mechanisms of Diminished Ovarian Reserve: Insights from Genetic Variants and Regulatory Factors. Reprod Sci 2024; 31:1521-1532. [PMID: 38347379 DOI: 10.1007/s43032-024-01467-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/19/2024] [Indexed: 05/24/2024]
Abstract
Delaying childbearing age has become a trend in modern times, but it has also led to a common challenge in clinical reproductive medicine-diminished ovarian reserve (DOR). Since the mechanism behind DOR is unknown and its clinical features are complex, physicians find it difficult to provide targeted treatment. Many factors affect ovarian reserve function, and existing studies have shown that genetic variants, upstream regulatory genes, and changes in protein expression levels are present in populations with reduced ovarian reserve function. However, existing therapeutic regimens often do not target the genetic profile for more individualized treatment. In this paper, we review the types of genetic variants, mutations, altered expression levels of microRNAs, and other related factors and their effects on the regulation of follicular development, as well as altered DNA methylation. We hope this review will have significant implications for the future treatment of individuals with reduced ovarian reserve.
Collapse
Affiliation(s)
- Qinying Zhu
- The First Clinical Medical College of, Lanzhou University, Lanzhou, China
| | - Hao Ma
- The First Clinical Medical College of, Lanzhou University, Lanzhou, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiaolei Liang
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, No.1, Donggangxi Rd, Chengguan District, Lanzhou, 730000, China.
| |
Collapse
|
6
|
Luppino G, Wasniewska M, Coco R, Pepe G, Morabito LA, Li Pomi A, Corica D, Aversa T. Role of NR5A1 Gene Mutations in Disorders of Sex Development: Molecular and Clinical Features. Curr Issues Mol Biol 2024; 46:4519-4532. [PMID: 38785542 PMCID: PMC11119465 DOI: 10.3390/cimb46050274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Disorders/differences of sex development (DSDs) are defined as broad, heterogenous groups of congenital conditions characterized by atypical development of genetic, gonadal, or phenotypic sex accompanied by abnormal development of internal and/or external genitalia. NR5A1 gene mutation is one of the principal genetic alterations implicated in causing DSD. This review outlines the role of NR5A1 gene during the process of gonadal development in humans, provides an overview of the molecular and functional characteristics of NR5A1 gene, and discusses potential clinical phenotypes and additional organ diseases due to NR5A1 mutations. NR5A1 mutations were analyzed in patients with 46,XY DSD and 46,XX DSD both during the neonatal and pubertal periods. Loss of function of the NR5A1 gene causes several different phenotypes, including some associated with disease in additional organs. Clinical phenotypes may vary, even among patients carrying the same NR5A1 variant, indicating that there is no specific genotype-phenotype correlation. Genetic tests are crucial diagnostic tools that should be used early in the diagnostic pathway, as early as the neonatal period, when gonadal dysgenesis is the main manifestation of NR5A1 mutation. NR5A1 gene mutations could be mainly associated with amenorrhea, ovarian failure, hypogonadism, and infertility during puberty. Fertility preservation techniques should be considered as early as possible.
Collapse
Affiliation(s)
- Giovanni Luppino
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (R.C.); (G.P.); (A.L.P.); (D.C.); (T.A.)
| | - Malgorzata Wasniewska
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (R.C.); (G.P.); (A.L.P.); (D.C.); (T.A.)
- Pediatric Unit, AOU Policlinico G. Martino, Via Consolare Valeria 1, 98125 Messina, Italy;
| | - Roberto Coco
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (R.C.); (G.P.); (A.L.P.); (D.C.); (T.A.)
| | - Giorgia Pepe
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (R.C.); (G.P.); (A.L.P.); (D.C.); (T.A.)
- Pediatric Unit, AOU Policlinico G. Martino, Via Consolare Valeria 1, 98125 Messina, Italy;
| | - Letteria Anna Morabito
- Pediatric Unit, AOU Policlinico G. Martino, Via Consolare Valeria 1, 98125 Messina, Italy;
| | - Alessandra Li Pomi
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (R.C.); (G.P.); (A.L.P.); (D.C.); (T.A.)
| | - Domenico Corica
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (R.C.); (G.P.); (A.L.P.); (D.C.); (T.A.)
- Pediatric Unit, AOU Policlinico G. Martino, Via Consolare Valeria 1, 98125 Messina, Italy;
| | - Tommaso Aversa
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (R.C.); (G.P.); (A.L.P.); (D.C.); (T.A.)
- Pediatric Unit, AOU Policlinico G. Martino, Via Consolare Valeria 1, 98125 Messina, Italy;
| |
Collapse
|
7
|
Zhang Y, Li X, Liu R, Huang X, Yang Y, Yuan J, Zhang Y, Sun J, Bai W. Protective effect of bioactive components from Rubi fructus against oxidative damage in human ovarian granulosa cells induced by 2,2-azobis (2-methylpropionamidine) dihydrochloride. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4425-4437. [PMID: 38349056 DOI: 10.1002/jsfa.13330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Diminished ovarian reserve has a serious impact on female reproduction with an increasing incidence every year. An important cause of this is oxidative stress. Rubi fructus, a traditional medicinal and edible plant, has shown therapeutic effects against gynecological diseases. Vanillic acid, isoquercitrin, kaempferol-3-O-rutinoside, kaempferol-3-O-sophoroside, oleanolic acid, tormentic acid, tiliroside, and ellagic acid are the major bioactive components in R. fructus. However, studies involved in the effectiveness and mechanism of these components in oxidative stress-induced ovarian dysfunction are scarce. RESULTS In this study, the protective mechanisms of the bioactive components were evaluated in human ovarian granulosa cells. Isoquercitrin was significantly superior to other bioactive components in relieving damage in human ovarian granulosa cells induced by 2,2-azobis (2-methylpropionamidine) dihydrochloride, considering enhanced cell viability, reduced reactive oxygen species accumulation, and improved mitochondrial membrane potential level. Isoquercitrin protected human ovarian granulosa cells from oxidative stress by regulating the enzyme activity of glutathione peroxidase, inhibiting cell apoptosis, improving the expression of genes related to oxidative stress, and ameliorating heme oxygenase 1 protein expression. CONCLUSION Isoquercitrin, a bioactive component in R. fructus, has a significant protective effect on oxidative damage induced by 2,2-azobis (2-methylpropionamidine) dihydrochloride in human ovarian granulosa cells, providing evidence for its potential application in protecting ovarian function. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yulin Zhang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Ruijing Liu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Xin Huang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Yiting Yang
- Infinitus (China) Company Ltd., Guangzhou, China
| | | | - Ying Zhang
- Infinitus (China) Company Ltd., Guangzhou, China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| |
Collapse
|
8
|
Zhou Q, Jin X, Wang J, Li H, Yang L, Wu W, Chen W. 4-vinylcyclohexene diepoxide induces premature ovarian insufficiency in rats by triggering the autophagy of granule cells through regulating miR-144. J Reprod Immunol 2023; 157:103928. [PMID: 36889083 DOI: 10.1016/j.jri.2023.103928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
This research explored the pathological and molecular mechanisms of 4-vinylcyclohexene diepoxide (VCD)-induced POI model. QRT-PCR was exploited to detect miR-144 expression in the peripheral blood of POI patients. Rat and KGN cells were treated with VCD to construct POI rat or cell model, respectively. After miR-144 agomir or MK-2206 treatment, miR-144 level, follicle damage, autophagy level and expressions of key pathway-related proteins in rats were detected, and cell viability and autophagy in KGN cells were detected. MiR-144 was apparently down-regulated in the peripheral blood of POI patients. Decreased miR-144 was viewed in both the serum and ovary of rats, yet this trend was apparently reversed by miR-144 agomir. The increased concentration of Follicle-stimulating hormone (FSH) and Luteinizing hormone (LH), along with decreased concentration of E2 and AMH, was observed in the serum of model rats, which was conspicuously negated by control agomir or miR-144 agomir. Increased number of autophagosomes, up-regulated PTEN, and inactivated AKT/m-TOR pathway induced by VCD in ovary tissues were strikingly offset by miR-144 agomir. Results of cytotoxicity assay revealed that 2 mM VCD prominently repressed KGN cell viability. In vitro experiments confirmed that miR-144 interfered with the effect of VCD on autophagy in KGN cells through the AKT/mTOR pathway. Taken together, VCD triggers autophagy to induce POI after targeting the AKT pathway by inhibiting miR-144, it suggest that up-regulation the expression of miR-144 may have the potential to treat POI.
Collapse
Affiliation(s)
- Qun Zhou
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Zhejiang Chinese Medical University, China
| | - Xin Jin
- Department of Massage, The First Affiliated Hospital of Zhejiang Chinese Medical University, China
| | - Jiaxi Wang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Zhejiang Chinese Medical University, China
| | - Huifang Li
- Department of TCM Gynecology, Tongxiang Maternal and Child Health-Care Center, China
| | - Lijuan Yang
- Department of Gynecology, First School of Clinical Medicine,Yunnan University of Chinese Medicine, China
| | - Weibo Wu
- First School of Clinical Medicine, Zhejiang Chinese Medical University, China
| | - Wenjun Chen
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Zhejiang Chinese Medical University, China.
| |
Collapse
|
9
|
Wang X, Wang L, Xiang W. Mechanisms of ovarian aging in women: a review. J Ovarian Res 2023; 16:67. [PMID: 37024976 PMCID: PMC10080932 DOI: 10.1186/s13048-023-01151-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Ovarian aging is a natural and physiological aging process characterized by loss of quantity and quality of oocyte or follicular pool. As it is generally accepted that women are born with a finite follicle pool that will go through constant decline without renewing, which, together with decreased oocyte quality, makes a severe situation for women who is of advanced age but desperate for a healthy baby. The aim of our review was to investigate mechanisms leading to ovarian aging by discussing both extra- and intra- ovarian factors and to identify genetic characteristics of ovarian aging. The mechanisms were identified as both extra-ovarian alternation of hypothalamic-pituitary-ovarian axis and intra-ovarian alternation of ovary itself, including telomere, mitochondria, oxidative stress, DNA damage, protein homeostasis, aneuploidy, apoptosis and autophagy. Moreover, here we reviewed related Genome-wide association studies (GWAS studies) from 2009 to 2021 and next generation sequencing (NGS) studies of primary ovarian insufficiency (POI) in order to describe genetic characteristics of ovarian aging. It is reasonable to wish more reliable anti-aging interventions for ovarian aging as the exploration of mechanisms and genetics being progressing.
Collapse
Affiliation(s)
- Xiangfei Wang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lingjuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenpei Xiang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
10
|
Mary L, Fradin M, Pasquier L, Quelin C, Loget P, Le Lous M, Le Bouar G, Nivot-Adamiak S, Lokchine A, Dubourg C, Jauffret V, Nouyou B, Henry C, Launay E, Odent S, Jaillard S, Belaud-Rotureau MA. Role of chromosomal imbalances in the pathogenesis of DSD: A retrospective analysis of 115 prenatal samples. Eur J Med Genet 2023; 66:104748. [PMID: 36948288 DOI: 10.1016/j.ejmg.2023.104748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/10/2023] [Accepted: 03/18/2023] [Indexed: 03/24/2023]
Abstract
Differences of sex development (DSDs) are a group of congenital conditions characterized by a discrepancy between chromosomal, gonadal, and genital sex development of an individual, with significant impact on medical, psychological and reproductive life. The genetic heterogeneity of DSDs complicates the diagnosis and almost half of the patients remains undiagnosed. In this context, chromosomal imbalances in syndromic DSD patients may help to identify new genes implicated in DSDs. In this study, we aimed at describing the burden of chromosomal imbalances including submicroscopic ones (copy number variants or CNVs) in a cohort of prenatal syndromic DSD patients, and review their role in DSDs. Our patients carried at least one pathogenic or likely pathogenic chromosomal imbalance/CNV or low-level mosaicism for aneuploidy. Almost half of the cases resulted from an unbalanced chromosomal rearrangement. Chromosome 9p/q, 4p/q, 3q and 11q anomalies were more frequently observed. Review of the literature confirmed the causative role of CNVs in DSDs, either in disruption of known DSD-causing genes (SOX9, NR0B1, NR5A1, AR, ATRX, …) or as a tool to suspect new genes in DSDs (HOXD cluster, ADCY2, EMX2, CAMK1D, …). Recurrent CNVs of regulatory elements without coding sequence content (i.e. duplications/deletions upstream of SOX3 or SOX9) confirm detection of CNVs as a mean to explore our non-coding genome. Thus, CNV detection remains a powerful tool to explore undiagnosed DSDs, either through routine techniques or through emerging technologies such as long-read whole genome sequencing or optical genome mapping.
Collapse
Affiliation(s)
- L Mary
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France; Univ Rennes, CHU Rennes, Inserm, EHESP, Irset, UMR_S, 1085, F-35000, Rennes, France.
| | - M Fradin
- Service de Génétique Clinique, Centre de Référence Anomalies Du Développement, CLAD Ouest, CHU Rennes, Rennes, France
| | - L Pasquier
- Service de Génétique Clinique, Centre de Référence Anomalies Du Développement, CLAD Ouest, CHU Rennes, Rennes, France; Université de Rennes, IGDR (Institut de Génétique et Développement), CNRS UMR 6290, INSERM ERL 1305, Rennes, France
| | - C Quelin
- Service de Génétique Clinique, Centre de Référence Anomalies Du Développement, CLAD Ouest, CHU Rennes, Rennes, France
| | - P Loget
- Service D'Anatomie Pathologique, Hôpital Pontchaillou, CHU Rennes, Rennes, France
| | - M Le Lous
- Unité de Médecine Fœtale, Service de Gynécologie-Obstétrique, CHU Rennes, Rennes, France
| | - G Le Bouar
- Unité de Médecine Fœtale, Service de Gynécologie-Obstétrique, CHU Rennes, Rennes, France
| | - S Nivot-Adamiak
- Service D'endocrinologie Pédiatrique, CHU Rennes, Rennes, France
| | - A Lokchine
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France
| | - C Dubourg
- Université de Rennes, IGDR (Institut de Génétique et Développement), CNRS UMR 6290, INSERM ERL 1305, Rennes, France; Service de Génétique Moléculaire et Génomique, CHU de Rennes, Rennes, 35033, France
| | - V Jauffret
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France
| | - B Nouyou
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France
| | - C Henry
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France
| | - E Launay
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France
| | - S Odent
- Service de Génétique Clinique, Centre de Référence Anomalies Du Développement, CLAD Ouest, CHU Rennes, Rennes, France; Université de Rennes, IGDR (Institut de Génétique et Développement), CNRS UMR 6290, INSERM ERL 1305, Rennes, France
| | - S Jaillard
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France; Univ Rennes, CHU Rennes, Inserm, EHESP, Irset, UMR_S, 1085, F-35000, Rennes, France
| | - M A Belaud-Rotureau
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France; Univ Rennes, CHU Rennes, Inserm, EHESP, Irset, UMR_S, 1085, F-35000, Rennes, France
| |
Collapse
|
11
|
Zhang Y, Xing H, Hu Z, Xu W, Tang Y, Zhang J, Niu Q. Independent and combined associations of urinary arsenic exposure and serum sex steroid hormones among 6-19-year old children and adolescents in NHANES 2013-2016. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160883. [PMID: 36526194 DOI: 10.1016/j.scitotenv.2022.160883] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Arsenic exposure may disrupt sex steroid hormones, causing endocrine disruption. However, human evidence is limited and inconsistent, especially for children and adolescents. To evaluate the independent and combined associations between arsenic exposure and serum sex steroid hormones in children and adolescents, we conducted a cross-sectional analysis of data from 1063 participants aged 6 to 19 years from the 2013-2016 National Health and Nutrition Examination Survey (NHANES). Three urine arsenic metabolites were examined, as well as three serum sex steroid hormones, estradiol (E2), total testosterone (TT), and sex hormone-binding globulin (SHBG). The ratio of TT to E2 (TT/E2) and the free androgen index (FAI) generated by TT/SHBG were also assessed. Linear regression, weighted quantile sum (WQS) regression, and Bayesian kernel machine regression (BKMR) were used to evaluate the associations of individual or arsenic metabolite combinations with sex steroid hormones by gender and age stratification. Positive associations were found between total arsenic and arsenic metabolites with TT, E2, and FAI. In contrast, negative associations were found between arsenic metabolites and SHBG. Furthermore, there was an interaction after gender-age stratification between DMA and SHBG in female adolescents. Notably, based on the WQS and BKMR model results, the combined association of arsenic and its metabolites was positively associated with TT, E2, and FAI and negatively associated with SHBG. Moreover, DMA and MMA dominated the highest weights among the arsenic metabolites. Overall, our results indicate that exposure to arsenic, either alone or in mixtures, may alter sex steroid hormone levels in children and adolescents.
Collapse
Affiliation(s)
- Yuanli Zhang
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Hengrui Xing
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Zeyu Hu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Wanjing Xu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Yanling Tang
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Jingjing Zhang
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Qiang Niu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China.
| |
Collapse
|
12
|
Liang Y, Wang H, Chen J, Chen L, Chen X. Rehmannioside D mitigates disease progression in rats with experimental-induced diminished ovarian reserve via Forkhead Box O1/KLOTHO axis. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2023; 27:167-176. [PMID: 36815256 PMCID: PMC9968945 DOI: 10.4196/kjpp.2023.27.2.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/22/2022] [Accepted: 09/19/2022] [Indexed: 02/24/2023]
Abstract
This study aims to explore the impact of Rehmannioside D (RD) on ovarian functions of rats with diminished ovarian reserve (DOR) and its underlying mechanisms of action. A single injection of cyclophosphamide was performed to establish a DOR rat model, and fourteen days after the injection, the rats were intragastrically administrated with RD for two weeks. Rat estrus cycles were tested using vaginal smears. Ovarian tissues were histologically evaluated, the number of primordial, mature, and atretic follicles was calculated, and the apoptotic rate of granulosa cells. Follicle-stimulating hormone (FSH), luteinizing hormone (LH), and estradiol (E2) levels were determined by ELISA assays. Protein levels of Forkhead Box O1 (FOXO1), KLOTHO, Bcl-2, and Bax were investigated in ovarian tissues of DOR rats. The binding between FOXO1 and KLOTHO was verified by ChIP assay. High-dose administration of RD into DOR rats improved their estrus cycles, increased ovarian index, enhanced the number of primordial and mature follicles, reduced the number of atretic follicle number, and ovarian granulosa cell apoptosis in addition to inhibiting FSH and LH levels and upregulating E2 expression. FOXO1 and KLOTHO were significantly suppressed in DOR rats. FOXO1 knockdown partially suppressed the protective effects of RD on DOR rats, and KLOTHO overexpression could restore RD-induced blockade of DOR development despite knocking down FOXO1. FOXO1 antibody enriched KLOTHO promoter, and the binding between them was reduced in DOR group compared to that in sham group. RD improved ovarian functions in DOR rats and diminished granulosa cell apoptosis via the FOXO1/KLOTHO axis.
Collapse
Affiliation(s)
- Yan Liang
- Department of Traditional Chinese Medicine, Maternal and Child Health Hospital of Jiangxi Province, Nanchang, Jiangxi 330006, China
| | - Huimin Wang
- Department of Traditional Chinese Medicine, Maternal and Child Health Hospital of Jiangxi Province, Nanchang, Jiangxi 330006, China
| | - Jin Chen
- Department of Traditional Chinese Medicine, Maternal and Child Health Hospital of Jiangxi Province, Nanchang, Jiangxi 330006, China
| | - Lingyan Chen
- Department of Traditional Chinese Medicine, Maternal and Child Health Hospital of Jiangxi Province, Nanchang, Jiangxi 330006, China
| | - Xiaoyong Chen
- Department of Traditional Chinese Medicine, Maternal and Child Health Hospital of Jiangxi Province, Nanchang, Jiangxi 330006, China,Correspondence Xiaoyong Chen, E-mail:
| |
Collapse
|
13
|
Chen M, Jiang H, Zhang C. Selected Genetic Factors Associated with Primary Ovarian Insufficiency. Int J Mol Sci 2023; 24:ijms24054423. [PMID: 36901862 PMCID: PMC10002966 DOI: 10.3390/ijms24054423] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 03/12/2023] Open
Abstract
Primary ovarian insufficiency (POI) is a heterogeneous disease resulting from non-functional ovaries in women before the age of 40. It is characterized by primary amenorrhea or secondary amenorrhea. As regards its etiology, although many POI cases are idiopathic, menopausal age is a heritable trait and genetic factors play an important role in all POI cases with known causes, accounting for approximately 20% to 25% of cases. This paper reviews the selected genetic causes implicated in POI and examines their pathogenic mechanisms to show the crucial role of genetic effects on POI. The genetic factors that can be found in POI cases include chromosomal abnormalities (e.g., X chromosomal aneuploidies, structural X chromosomal abnormalities, X-autosome translocations, and autosomal variations), single gene mutations (e.g., newborn ovary homeobox gene (NOBOX), folliculogenesis specific bHLH transcription factor (FIGLA), follicle-stimulating hormone receptor (FSHR), forkhead box L2 (FOXL2), bone morphogenetic protein 15 (BMP15), etc., as well as defects in mitochondrial functions and non-coding RNAs (small ncRNAs and long ncRNAs). These findings are beneficial for doctors to diagnose idiopathic POI cases and predict the risk of POI in women.
Collapse
Affiliation(s)
- Mengchi Chen
- Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Haotian Jiang
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Chunping Zhang
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
- Correspondence:
| |
Collapse
|
14
|
Luo W, Ke H, Tang S, Jiao X, Li Z, Zhao S, Zhang F, Guo T, Qin Y. Next-generation sequencing of 500 POI patients identified novel responsible monogenic and oligogenic variants. J Ovarian Res 2023; 16:39. [PMID: 36793102 PMCID: PMC9930292 DOI: 10.1186/s13048-023-01104-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 01/17/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Premature ovarian insufficiency refers to the loss of ovarian function before 40 years of age. The etiology is heterogeneous, and genetic factors account for 20-25% of cases. However, how to transform genetic findings to clinical molecular diagnose remains a challenge. To identify potential causative variations for POI, a next generation sequencing panel with 28 known causative genes of POI was designed, and a large cohort of 500 Chinese Han patients was screened directly. Pathogenic evaluation of the identified variants and the phenotype analysis were performed according to monogenic or oligogenic variants. RESULTS A total of 14.4% (72/500) of the patients carried 61 pathogenic or likely pathogenic variants in 19 of the genes in the panel. Interestingly, 58 variants (95.1%, 58/61) were firstly identified in patients with POI. FOXL2 harbored the highest occurrence frequency (3.2%, 16/500), among whom presented with isolated ovarian insufficiency instead of blepharophimosis-ptosis-epicanthus inversus syndrome. Moreover, luciferase reporter assay confirmed variant p.R349G, which account for 2.6% of POI cases, impaired the transcriptional repressive effect of FOXL2 on CYP17A1. The novel compound heterozygous variants in NOBOX and MSH4 were confirmed by pedigree haplotype analysis, and digenic heterozygous variants in MSH4 and MSH5 were firstly identified. Furthermore, nine patients (1.8%, 9/500) with digenic or multigenic pathogenic variants presented with delayed menarche, early onset of POI and high prevalence of primary amenorrhea compared with those with monogenic variation(s). CONCLUSIONS The genetic architecture of POI has been enriched through the targeted gene panel in a large cohort of patients with POI. Specific variants in pleiotropic genes may result in isolated POI rather than syndromic POI, whereas oligogenic defects might have cumulative deleterious effects on the severity of POI phenotype.
Collapse
Affiliation(s)
- Wei Luo
- grid.27255.370000 0004 1761 1174Center for Reproductive Medicine, Shandong University. Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan Shandong.;Shandong Provincial Hospital. National Research Center for Assisted Reproductive Technology and Reproductive Genetics, China. Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, China
| | - Hanni Ke
- grid.27255.370000 0004 1761 1174Center for Reproductive Medicine, Shandong University. National Research Center for Assisted Reproductive Technology and Reproductive Genetics, China. Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, China
| | - Shuyan Tang
- grid.8547.e0000 0001 0125 2443Obstetrics and Gynecology Hospital, School of Life Sciences, Fudan University, Shanghai, China
| | - Xue Jiao
- grid.27255.370000 0004 1761 1174Center for Reproductive Medicine, Shandong University. National Research Center for Assisted Reproductive Technology and Reproductive Genetics, China. Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, China
| | - Zhuqing Li
- grid.27255.370000 0004 1761 1174Center for Reproductive Medicine, Shandong University. National Research Center for Assisted Reproductive Technology and Reproductive Genetics, China. Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, China
| | - Shidou Zhao
- grid.27255.370000 0004 1761 1174Center for Reproductive Medicine, Shandong University. National Research Center for Assisted Reproductive Technology and Reproductive Genetics, China. Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, China
| | - Feng Zhang
- grid.8547.e0000 0001 0125 2443Obstetrics and Gynecology Hospital, School of Life Sciences, Fudan University, Shanghai, China
| | - Ting Guo
- Center for Reproductive Medicine, Shandong University. National Research Center for Assisted Reproductive Technology and Reproductive Genetics, China. Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, China.
| | - Yingying Qin
- Center for Reproductive Medicine, Shandong University. National Research Center for Assisted Reproductive Technology and Reproductive Genetics, China. Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, China.
| |
Collapse
|
15
|
Kuang L, Liu B, Xi D, Gao Y. A novel heterozygous ERCC6 variant identified in a Chinese family with non-syndromic primary ovarian insufficiency. Mol Genet Genomic Med 2022; 10:e2040. [PMID: 35975393 PMCID: PMC9544206 DOI: 10.1002/mgg3.2040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/22/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
Background Premature ovarian insufficiency (POI) is a clinical syndrome occurring in women before 40 with decreased ovarian function. Up to 25% of POI cases result from genetic factors that remain largely unknown. The Excision repair cross‐complementing, group 6 (ERCC6) variant has been found to cause POI, which is hardly ever diagnosed in adolescents. Methods Whole‐exome sequencing was performed on a 19‐year‐old proband with non‐syndromic POI and her parents. Sanger sequencing was used to confirm the identified variant. The effect of the variant on the protein was analyzed in silico and Swiss‐MODEL. Results A novel heterozygous missense variant, c.2444G > A (p. GLy815Asp) of ERCC6 was identified in the proband who inherited the variant from her father. The variant was confirmed in another POI patient from the pedigree and was absent in the proband's mother and sister who presented normally. In silico analysis predicted this variant was deleterious. Swiss‐Model revealed that the mutant amino acid formed multiple H‐bonds with adjacent residues, which may lead to a dysfunction of ERCC6 protein. Conclusion We firstly diagnosed an adolescent POI case associated with a novel heterozygous ERCC6 variant. The results expanded the variants spectrum of ERCC6 and provided guidance for POI diagnosis and genetic counselling.
Collapse
Affiliation(s)
- Lele Kuang
- Department of Assisted Reproduction, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Liu
- Department of Assisted Reproduction, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Di Xi
- Department of Assisted Reproduction, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuping Gao
- Department of Assisted Reproduction, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
16
|
Xie Y, Wu C, Li Z, Wu Z, Hong L. Early Gonadal Development and Sex Determination in Mammal. Int J Mol Sci 2022; 23:ijms23147500. [PMID: 35886859 PMCID: PMC9323860 DOI: 10.3390/ijms23147500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Sex determination is crucial for the transmission of genetic information through generations. In mammal, this process is primarily regulated by an antagonistic network of sex-related genes beginning in embryonic development and continuing throughout life. Nonetheless, abnormal expression of these sex-related genes will lead to reproductive organ and germline abnormalities, resulting in disorders of sex development (DSD) and infertility. On the other hand, it is possible to predetermine the sex of animal offspring by artificially regulating sex-related gene expression, a recent research hotspot. In this paper, we reviewed recent research that has improved our understanding of the mechanisms underlying the development of the gonad and primordial germ cells (PGCs), progenitors of the germline, to provide new directions for the treatment of DSD and infertility, both of which involve manipulating the sex ratio of livestock offspring.
Collapse
Affiliation(s)
- Yanshe Xie
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510630, China; (Y.X.); (C.W.); (Z.L.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510630, China
| | - Changhua Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510630, China; (Y.X.); (C.W.); (Z.L.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510630, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510630, China; (Y.X.); (C.W.); (Z.L.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510630, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510630, China; (Y.X.); (C.W.); (Z.L.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510630, China
- Correspondence: (Z.W.); (L.H.)
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510630, China; (Y.X.); (C.W.); (Z.L.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510630, China
- Correspondence: (Z.W.); (L.H.)
| |
Collapse
|
17
|
Li L, Sun B, Wang F, Zhang Y, Sun Y. Which Factors Are Associated With Reproductive Outcomes of DOR Patients in ART Cycles: An Eight-Year Retrospective Study. Front Endocrinol (Lausanne) 2022; 13:796199. [PMID: 35813637 PMCID: PMC9259947 DOI: 10.3389/fendo.2022.796199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 04/25/2022] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Women with diminished ovarian reserve (DOR) have a lower pregnancy rate and higher cancellation rate compared to those without DOR when seeking assisted reproductive technology. However, which factors are associated with reproductive outcomes and whether AMH is a predictor of clinical pregnancy remain unclear. OBJECTIVE This retrospective study was designed to find factors associated with reproductive outcomes in DOR patients and then discuss the role of AMH in predicting cycle results among this population. METHOD A total of 900 women were included in the study. They were diagnosed with DOR with the following criteria: (i) FSH > 10 IU/L; (ii)AMH < 1.1 ng/ml; and (iii) AFC <7. They were divided into different groups: firstly, based on whether they were clinically pregnant or not, pregnant group vs. non-pregnant group (comparison 1); secondly, if patients had transferrable embryos (TE) or not, TE vs. no TE group (comparison 2); thirdly, patients undergoing embryo transfer (ET) cycles were divided into pregnant I and non-pregnant I group (comparison 3). The baseline and ovarian stimulation characteristics of these women in their first IVF/ICSI cycles were analyzed. Logistic regression was performed to find factors associated with clinical pregnancy. RESULTS Of the 900 DOR patients, 138 women got pregnant in their first IVF/ICSI cycles while the rest did not. AMH was an independent predictor of TE after adjusting for confounding factors (adjusted OR:11.848, 95% CI: 6.21-22.62, P< 0.001). Further ROC (receiver operating characteristic) analysis was performed and the corresponding AUC (the area under the curve) was 0.679 (95% CI: 0.639-0.72, P< 0.001). Notably, an AMH level of 0.355 had a sensitivity of 62.6% and specificity of 65.6%. However, there was no statistical difference in AMH level in comparison 3, and multivariate logistic regression showed female age was associated with clinical pregnancy in ET cycles and women who were under 35 years old were more likely to be pregnant compared to those older than 40 years old (adjusted OR:4.755, 95% CI: 2.81-8.04, P< 0.001). CONCLUSION AMH is highly related to oocyte collection rate and TE rate,and 0.355 ng/ml was a cutoff value for the prediction of TE. For DOR patients who had an embryo transferred, AMH is not associated with clinical pregnancy while female age is an independent risk factor for it.
Collapse
Affiliation(s)
- Lu Li
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bo Sun
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fang Wang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yile Zhang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingpu Sun
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Yingpu Sun,
| |
Collapse
|
18
|
Qi Q, Zhang X, Yao L, Chen Y, Weng H. Pueratin improves diminished ovarian reserve by inhibiting apoptosis. Exp Ther Med 2021; 22:1423. [PMID: 34721677 PMCID: PMC8549093 DOI: 10.3892/etm.2021.10858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/30/2021] [Indexed: 11/22/2022] Open
Abstract
Pueratin (Pue) is an extract from Pueraria lobata, and exhibits therapeutic effects for the treatment of inflammation. However, the beneficial effects and mechanisms underlying Pue in the treatment of diminished ovarian reserve (DOR) remains to be fully elucidated. The aim of the present study was to investigate the effect of Pue on Bcl-2 and Bax protein expression in rats with DOR, associated with infertility within clinical practice, induced by 4-vinylcyclohexene diepoxide (VCD). A model of DOR was established in female Sprague Dawley rats by an intraperitoneal injection of 80 mg/kg VCD daily for 45 days. From day 1, the Sprague Dawley rats were orally administered with drugs daily for 45 days. They were divided into normal, model, Pue-low dose (L), Pue-medium dose (M) and Pue-high dose (H) groups (50, 100 and 300 mg/kg Pue, respectively). Follicle-stimulating hormone (FSH), luteinizing hormone (LH) and estradiol (E2) levels were subsequently detected using ELISA. H&E staining and TUNEL staining were used to evaluate histopathological changes and apoptosis levels in the ovary, respectively. Bcl-2 and Bax protein expression levels in rat ovaries were evaluated using immunohistochemistry and western blotting. Compared with those in the model group, FSH and LH levels in the Pue-L, -M and -H groups were significantly decreased, whilst E2 levels were significantly increased (P<0.05). After intragastric administration, the volume of the ovaries and uteri of rats in the Pue groups was increased compared with the model group, and the numbers of primordial follicles and primary follicles were also increased. The number of apoptotic cells and the expression of Bax were significantly reduced in a dose-dependent manner (P<0.05), compared with the model group. In addition, Bcl-2 protein expression and the Bcl-2/Bax ratio were found to be significantly increased in the Pue-treated groups in a dose-dependent manner (P<0.05), compared with the model group. In conclusion, Pue treatment improved ovarian function by regulating hormone balance in addition to Bcl-2 and Bax expression.
Collapse
Affiliation(s)
- Quan Qi
- Reproductive Medicine Center, Guangdong Women and Children Hospital, Guangdong, Guangzhou 511442, P.R. China
| | - Xiqian Zhang
- Reproductive Medicine Center, Guangdong Women and Children Hospital, Guangdong, Guangzhou 511442, P.R. China
| | - Li Yao
- Reproductive Medicine Center, Guangdong Women and Children Hospital, Guangdong, Guangzhou 511442, P.R. China
| | - Ye Chen
- Reproductive Medicine Center, Guangdong Women and Children Hospital, Guangdong, Guangzhou 511442, P.R. China
| | - Huinan Weng
- Reproductive Medicine Center, Guangdong Women and Children Hospital, Guangdong, Guangzhou 511442, P.R. China
| |
Collapse
|
19
|
Liu W, Chen Q, Liu Z, Weng Z, Nguyen TN, Feng J, Zhou S. Zihuai recipe alleviates cyclophosphamide-induced diminished ovarian reserve via suppressing PI3K/AKT-mediated apoptosis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 277:113789. [PMID: 33422655 DOI: 10.1016/j.jep.2021.113789] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/28/2020] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zihuai recipe (ZHR), a Chinese herbal prescription, is widely used for the clinical treatment of Diminished ovarian reserve (DOR) infertility. However, little is known regarding its underlying mechanisms of DOR treatment. AIM OF THE STUDY This study aimed to investigate the beneficial effects of ZHR on the treatment of DOR and to reveal the underlying mechanisms. MATERIALS AND METHODS Sixty female 8-week-old Sprague-Dawley rats were randomly divided into the following six groups (n=10 per group): control, DOR, low-dose(2.7 g/kg/day) ZHR (L-ZHR), medium-dose(5.4 g/kg/day), ZHR (M-ZHR), high-dose(10.8 g/kg/day) ZHR (H-ZHR), and hormone replacement therapy (HRT) treatment groups. The DOR model was established in all the groups, except the control group, by a single intraperitoneal injection of 90 mg/kg cyclophosphamide. After the induction of the DOR model, rats were weighed and administered either the relevant dose of ZHR or an equal volume of saline solution (in the control and DOR groups). Rats in the HRT group received estradiol valerate tablets (0.16 mg/kg/day), and with medroxyprogesterone acetate tablets (0.86 mg/kg/day) added on day 4. After 32 days of treatment, the rats were euthanized and the ovaries were collected for sampling. Ovarian morphology was observed by hematoxylin and eosin staining and the number of follicles was counted under a microscope. The serum levels of anti-Müllerian hormone (AMH), gonadotropin-releasing hormone (GnRH), follicle-stimulating hormone (FSH), luteinizing hormone (LH), and estradiol (E2) were quantified by ELISA. A TUNEL assay was used to analyze the level of apoptosis of the ovarian cells. The protein expressions of p-PI3K, p-AKT, PI3K, AKT, cleaved caspase-3, BAX, and Bcl-2 were measured by western blotting and immunohistochemistry. Data analysis was performed with SPSS 20.0 software. RESULTS ZHR administration increased the ovarian index and the serum levels of AMH, GnRH, and E2, while lowering those of FSH and LH. ZHR treatment also increased the number of primordial, primary, secondary, and antral follicles, as well as the number of corpora lutea, but decreased the number of atretic follicles. Furthermore, ZHR administration decreased the percentage of TUNEL-positive ovarian cells. After treatment with ZHR, the protein expression levels of p-PI3K/PI3K, p-AKT/AKT, cleaved caspase-3 and BAX were decreased, whereas the level of Bcl-2 was increased. CONCLUSIONS ZHR improved the ovarian reserve in CTX-induced DOR rats. The mechanisms of ZHR on DOR may be mediated through the regulation of gonadal hormones of the hypothalamic-pituitary-ovarian axis (HPOA), and the inhibition of PI3K/AKT-mediated apoptosis in granulosa cells.
Collapse
Affiliation(s)
- Weiping Liu
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Qi Chen
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zhidan Liu
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zhiwei Weng
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | | | - Jiaming Feng
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Shaohu Zhou
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
| |
Collapse
|
20
|
Moiseeva AV, Kudryavtseva VA, Nikolenko VN, Gevorgyan MM, Unanyan AL, Bakhmet AA, Sinelnikov MY. Genetic determination of the ovarian reserve: a literature review. J Ovarian Res 2021; 14:102. [PMID: 34362406 PMCID: PMC8349022 DOI: 10.1186/s13048-021-00850-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/23/2021] [Indexed: 12/30/2022] Open
Abstract
The ovarian reserve is one of the most important indicators of female fertility. It allows for the evaluation of the number of viable oocytes. This parameter is actively used in pregnancy planning and in assisted reproductive technology application, as it determines chances of successful fertilization and healthy pregnancy. Due to increased attention towards diagnostic tests evaluating the ovarian reserve, there has been a growing interest in factors that influence the state of the ovarian reserve. True reasons for pathological changes in the ovarian reserve and volume have not yet been explored in depth, and current diagnostic screening methods often fall short in efficacy. In the following review we analyze existing data relating to the study of the ovarian reserve through genetic testing, determining specific characteristics of the ovarian reserve through genetic profiling. We explore existing studies dedicated to finding specific genetic targets influencing the state of the ovarian reserve.
Collapse
Affiliation(s)
| | | | - Vladimir N Nikolenko
- Sechenov University, Mohovaya 11c10, Moscow, Russian Federation.,Moscow State University, Moscow, Russian Federation
| | | | - Ara L Unanyan
- Sechenov University, Mohovaya 11c10, Moscow, Russian Federation
| | | | - Mikhail Y Sinelnikov
- Sechenov University, Mohovaya 11c10, Moscow, Russian Federation. .,Research Institute of Human Morphology, Moscow, Russian Federation.
| |
Collapse
|
21
|
Henarejos-Castillo I, Aleman A, Martinez-Montoro B, Gracia-Aznárez FJ, Sebastian-Leon P, Romeu M, Remohi J, Patiño-Garcia A, Royo P, Alkorta-Aranburu G, Diaz-Gimeno P. Machine Learning-Based Approach Highlights the Use of a Genomic Variant Profile for Precision Medicine in Ovarian Failure. J Pers Med 2021; 11:609. [PMID: 34199109 PMCID: PMC8305607 DOI: 10.3390/jpm11070609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 12/27/2022] Open
Abstract
Ovarian failure (OF) is a common cause of infertility usually diagnosed as idiopathic, with genetic causes accounting for 10-25% of cases. Whole-exome sequencing (WES) may enable identifying contributing genes and variant profiles to stratify the population into subtypes of OF. This study sought to identify a blood-based gene variant profile using accumulation of rare variants to promote precision medicine in fertility preservation programs. A case-control (n = 118, n = 32, respectively) WES study was performed in which only non-synonymous rare variants <5% minor allele frequency (MAF; in the IGSR) and coverage ≥ 100× were considered. A profile of 66 variants of uncertain significance was used for training an unsupervised machine learning model to separate cases from controls (97.2% sensitivity, 99.2% specificity) and stratify the population into two subtypes of OF (A and B) (93.31% sensitivity, 96.67% specificity). Model testing within the IGSR female population predicted 0.5% of women as subtype A and 2.4% as subtype B. This is the first study linking OF to the accumulation of rare variants and generates a new potential taxonomy supporting application of this approach for precision medicine in fertility preservation.
Collapse
Affiliation(s)
- Ismael Henarejos-Castillo
- IVI Foundation-Instituto de Investigación Sanitaria La Fe, Av. Fernando Abril Martorell 106, Torre A, Planta 1ª, 46026 Valencia, Spain; (I.H.-C.); (A.A.); (P.S.-L.)
- Department of Paediatrics, Obstetrics and Gynaecology, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain;
| | - Alejandro Aleman
- IVI Foundation-Instituto de Investigación Sanitaria La Fe, Av. Fernando Abril Martorell 106, Torre A, Planta 1ª, 46026 Valencia, Spain; (I.H.-C.); (A.A.); (P.S.-L.)
| | - Begoña Martinez-Montoro
- IVI-RMA Pamplona, Reproductive Medicine, C/Sangüesa, Número 15-Planta Baja, 31003 Pamplona, Spain; (B.M.-M.); (P.R.)
| | - Francisco Javier Gracia-Aznárez
- CIMA Lab Diagnostics, University of Navarra, IdiSNA, Avda Pio XII, 55, 31008 Pamplona, Spain; (F.J.G.-A.); (A.P.-G.); (G.A.-A.)
| | - Patricia Sebastian-Leon
- IVI Foundation-Instituto de Investigación Sanitaria La Fe, Av. Fernando Abril Martorell 106, Torre A, Planta 1ª, 46026 Valencia, Spain; (I.H.-C.); (A.A.); (P.S.-L.)
- IVI-RMA Pamplona, Reproductive Medicine, C/Sangüesa, Número 15-Planta Baja, 31003 Pamplona, Spain; (B.M.-M.); (P.R.)
| | - Monica Romeu
- Hospital Universitario y Politécnico La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain;
| | - Jose Remohi
- Department of Paediatrics, Obstetrics and Gynaecology, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain;
- IVI-RMA Valencia, Reproductive Medicine, Plaça de la Policia Local, 3, 46015 Valencia, Spain
| | - Ana Patiño-Garcia
- CIMA Lab Diagnostics, University of Navarra, IdiSNA, Avda Pio XII, 55, 31008 Pamplona, Spain; (F.J.G.-A.); (A.P.-G.); (G.A.-A.)
- Laboratorio de Pediatría-Unidad de Genética Clínica, Clínica Universidad de Navarra, Avda Pio XII, 55, 31008 Pamplona, Spain
| | - Pedro Royo
- IVI-RMA Pamplona, Reproductive Medicine, C/Sangüesa, Número 15-Planta Baja, 31003 Pamplona, Spain; (B.M.-M.); (P.R.)
| | - Gorka Alkorta-Aranburu
- CIMA Lab Diagnostics, University of Navarra, IdiSNA, Avda Pio XII, 55, 31008 Pamplona, Spain; (F.J.G.-A.); (A.P.-G.); (G.A.-A.)
| | - Patricia Diaz-Gimeno
- IVI Foundation-Instituto de Investigación Sanitaria La Fe, Av. Fernando Abril Martorell 106, Torre A, Planta 1ª, 46026 Valencia, Spain; (I.H.-C.); (A.A.); (P.S.-L.)
- IVI-RMA Pamplona, Reproductive Medicine, C/Sangüesa, Número 15-Planta Baja, 31003 Pamplona, Spain; (B.M.-M.); (P.R.)
| |
Collapse
|
22
|
Ding X, Schimenti JC. Strategies to Identify Genetic Variants Causing Infertility. Trends Mol Med 2021; 27:792-806. [PMID: 33431240 DOI: 10.1016/j.molmed.2020.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/26/2020] [Accepted: 12/11/2020] [Indexed: 12/19/2022]
Abstract
Genetic causes are thought to underlie about half of infertility cases, but understanding the genetic bases has been a major challenge. Modern genomics tools allow more sophisticated exploration of genetic causes of infertility through population, family-based, and individual studies. Nevertheless, potential therapies based on genetic diagnostics will be limited until there is certainty regarding the causality of genetic variants identified in an individual. Genome modulation and editing technologies have revolutionized our ability to functionally test such variants, and also provide a potential means for clinical correction of infertility variants. This review addresses strategies being used to identify causative variants of infertility.
Collapse
Affiliation(s)
- Xinbao Ding
- Cornell University, College of Veterinary Medicine, Department of Biomedical Sciences, Ithaca, NY 14853, USA
| | - John C Schimenti
- Cornell University, College of Veterinary Medicine, Department of Biomedical Sciences, Ithaca, NY 14853, USA.
| |
Collapse
|
23
|
Ochoa MF, Yankovic F, Poggi H, Martinez A. Different Clinical Manifestations Related to Subvirilization in Three XY Patients With the Same Pathogenic Variant of Steroidogenic Factor 1. AACE Clin Case Rep 2020; 7:145-148. [PMID: 34095474 PMCID: PMC8053627 DOI: 10.1016/j.aace.2020.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Objective During the prenatal period, steroidogenic factor 1 is required for the development of the adrenal glands and for gonadal determination and differentiation, and after birth, it regulates gonadal progenitor cell formation and their survival. Here, we describe the clinical phenotype of three 46,XY patients (2 brothers and an unrelated subject) with disorder of sex development due to the same genetic variant. Methods All patients underwent hormonal and pelvic ultrasound studies. Sequence analysis and deletion/duplication testing of a panel encompassing 8 genes (AR, DHH, MAP3K1, NROB1, SRD5A2, SRY, WT1, and nuclear receptor subfamily 5, group A, member 1 [NR5A1]) were performed in the index cases. All family members were tested for the presence of the NR5A1 variant. Results A variant previously described as likely pathogenic in NR5A1 (c.251G>A, p.Arg84His) that segregated in 1 family with different degrees of under-virilization was found. The family 1 index case (IV2) and his brother (IV3) had an external masculinization scale score of 5/12, but only the index case had Müllerian remnants; however, the family 2 patient had a milder score of 9/12. The older female relatives of family 1 who harbor this variant experienced premature menopause. Conclusion To our knowledge, this is the first report where the c.251G>A (p.Arg84His) variant is associated with the presence of Müllerian remnants in 46,XY subjects and primary ovarian insufficiency in 46,XX individuals. The segregation of this variant with clinical manifestations provides further evidence for considering it as pathogenic.
Collapse
Affiliation(s)
- Maria Fernanda Ochoa
- Endocrinology Unit, División of Pediatric, Pontificia Universidad Católica, Santiago, Chile
| | | | - Helena Poggi
- Endocrinology Unit, División of Pediatric, Pontificia Universidad Católica, Santiago, Chile
| | - Alejandro Martinez
- Endocrinology Unit, División of Pediatric, Pontificia Universidad Católica, Santiago, Chile
| |
Collapse
|
24
|
A recurrent mutation in TBPL2 causes diminished ovarian reserve and female infertility. J Genet Genomics 2020; 47:785-788. [PMID: 33541821 DOI: 10.1016/j.jgg.2020.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022]
|
25
|
Yang X, Zhang F, Shi Q, Wu Y. "Response to the letter to the editor "Concerns regarding the potentially causal role of FANCA heterozygous variants in human primary ovarian insufficiency"". Hum Genet 2020; 140:695-697. [PMID: 33175223 DOI: 10.1007/s00439-020-02233-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Xi Yang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, 200011, China
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Qinghua Shi
- The First Affiliated Hospital of USTC, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei, 230027, China.
| | - Yanhua Wu
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, 200011, China. .,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China. .,National Demonstration Center for Experimental Biology Education, School of Life Sciences, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
26
|
Jaillard S, Bell K, Akloul L, Walton K, McElreavy K, Stocker WA, Beaumont M, Harrisson C, Jääskeläinen T, Palvimo JJ, Robevska G, Launay E, Satié AP, Listyasari N, Bendavid C, Sreenivasan R, Duros S, van den Bergen J, Henry C, Domin-Bernhard M, Cornevin L, Dejucq-Rainsford N, Belaud-Rotureau MA, Odent S, Ayers KL, Ravel C, Tucker EJ, Sinclair AH. New insights into the genetic basis of premature ovarian insufficiency: Novel causative variants and candidate genes revealed by genomic sequencing. Maturitas 2020; 141:9-19. [PMID: 33036707 DOI: 10.1016/j.maturitas.2020.06.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/12/2020] [Accepted: 06/07/2020] [Indexed: 11/20/2022]
Abstract
Ovarian deficiency, including premature ovarian insufficiency (POI) and diminished ovarian reserve (DOR), represents one of the main causes of female infertility. POI is a genetically heterogeneous condition but current understanding of its genetic basis is far from complete, with the cause remaining unknown in the majority of patients. The genes that regulate DOR have been reported but the genetic basis of DOR has not been explored in depth. Both conditions are likely to lie along a continuum of degrees of decrease in ovarian reserve. We performed genomic analysis via whole exome sequencing (WES) followed by in silico analyses and functional experiments to investigate the genetic cause of ovarian deficiency in ten affected women. We achieved diagnoses for three of them, including the identification of novel variants in STAG3, GDF9, and FANCM. We identified potentially causative FSHR variants in another patient. This is the second report of biallelic GDF9 and FANCM variants, and, combined with functional support, validates these genes as bone fide autosomal recessive "POI genes". We also identified new candidate genes, NRIP1, XPO1, and MACF1. These genes have been linked to ovarian function in mouse, pig, and zebrafish respectively, but never in humans. In the case of NRIP1, we provide functional support for the deleterious nature of the variant via SUMOylation and luciferase/β-galactosidase reporter assays. Our study provides multiple insights into the genetic basis of POI/DOR. We have further elucidated the involvement of GDF9, FANCM, STAG3 and FSHR in POI pathogenesis, and propose new candidate genes, NRIP1, XPO1, and MACF1, which should be the focus of future studies.
Collapse
Affiliation(s)
- Sylvie Jaillard
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France; CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia.
| | - Katrina Bell
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
| | - Linda Akloul
- CHU Rennes, Service de Génétique Clinique, CLAD Ouest, F-35033, Rennes, France
| | - Kelly Walton
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, VIC, 3800, Australia
| | | | - William A Stocker
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, VIC, 3800, Australia; Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Marion Beaumont
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France
| | - Craig Harrisson
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, VIC, 3800, Australia
| | - Tiina Jääskeläinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, FI-70211 Kuopio, Finland
| | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, FI-70211 Kuopio, Finland
| | - Gorjana Robevska
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
| | - Erika Launay
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France
| | - Anne-Pascale Satié
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Nurin Listyasari
- Doctoral Program of Medical and Health Sciences, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Claude Bendavid
- INRAE, INSERM, Univ Rennes, Institut NuMeCan, Rennes, Saint-Gilles, France; CHU Rennes, Laboratoire de Biochimie et Toxicologie, F-35033, Rennes, France
| | - Rajini Sreenivasan
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
| | - Solène Duros
- CHU Rennes, Département de Gynécologie Obstétrique et Reproduction Humaine, F-35033, Rennes, France
| | - Jocelyn van den Bergen
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
| | - Catherine Henry
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France
| | - Mathilde Domin-Bernhard
- CHU Rennes, Département de Gynécologie Obstétrique et Reproduction Humaine, F-35033, Rennes, France
| | - Laurence Cornevin
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France
| | - Nathalie Dejucq-Rainsford
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Marc-Antoine Belaud-Rotureau
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France; CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France; CHU Rennes, Service de Biologie de la Reproduction-CECOS, F-35033, Rennes, France
| | - Sylvie Odent
- CHU Rennes, Service de Génétique Clinique, CLAD Ouest, F-35033, Rennes, France; Univ Rennes, CNRS UMR 6290, Institut de Génétique et Développement, F-35000, Rennes, France
| | - Katie L Ayers
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Célia Ravel
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France; CHU Rennes, Service de Biologie de la Reproduction-CECOS, F-35033, Rennes, France
| | - Elena J Tucker
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, 3052, Australia.
| | - Andrew H Sinclair
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, 3052, Australia
| |
Collapse
|