1
|
McKenna MC, Kleinerova J, Power A, Garcia-Gallardo A, Tan EL, Bede P. Quantitative and Computational Spinal Imaging in Neurodegenerative Conditions and Acquired Spinal Disorders: Academic Advances and Clinical Prospects. BIOLOGY 2024; 13:909. [PMID: 39596864 PMCID: PMC11592215 DOI: 10.3390/biology13110909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024]
Abstract
Introduction: Quantitative spinal cord imaging has facilitated the objective appraisal of spinal cord pathology in a range of neurological conditions both in the academic and clinical setting. Diverse methodological approaches have been implemented, encompassing a range of morphometric, diffusivity, susceptibility, magnetization transfer, and spectroscopy techniques. Advances have been fueled both by new MRI platforms and acquisition protocols as well as novel analysis pipelines. The quantitative evaluation of specific spinal tracts and grey matter indices has the potential to be used in diagnostic and monitoring applications. The comprehensive characterization of spinal disease burden in pre-symptomatic cohorts, in carriers of specific genetic mutations, and in conditions primarily associated with cerebral disease, has contributed important academic insights. Methods: A narrative review was conducted to examine the clinical and academic role of quantitative spinal cord imaging in a range of neurodegenerative and acquired spinal cord disorders, including hereditary spastic paraparesis, hereditary ataxias, motor neuron diseases, Huntington's disease, and post-infectious or vascular disorders. Results: The clinical utility of specific methods, sample size considerations, academic role of spinal imaging, key radiological findings, and relevant clinical correlates are presented in each disease group. Conclusions: Quantitative spinal cord imaging studies have demonstrated the feasibility to reliably appraise structural, microstructural, diffusivity, and metabolic spinal cord alterations. Despite the notable academic advances, novel acquisition protocols and analysis pipelines are yet to be implemented in the clinical setting.
Collapse
Affiliation(s)
- Mary Clare McKenna
- Computational Neuroimaging Group, Trinity College Dublin, 152-160 Pearse St, 2 D02 R590 Dublin, Ireland
- Department of Neurology, St James’s Hospital, James St, 8 D08 NHY1 Dublin, Ireland
| | - Jana Kleinerova
- Computational Neuroimaging Group, Trinity College Dublin, 152-160 Pearse St, 2 D02 R590 Dublin, Ireland
| | - Alan Power
- Computational Neuroimaging Group, Trinity College Dublin, 152-160 Pearse St, 2 D02 R590 Dublin, Ireland
- Department of Neurology, St James’s Hospital, James St, 8 D08 NHY1 Dublin, Ireland
| | - Angela Garcia-Gallardo
- Computational Neuroimaging Group, Trinity College Dublin, 152-160 Pearse St, 2 D02 R590 Dublin, Ireland
- Department of Neurology, St James’s Hospital, James St, 8 D08 NHY1 Dublin, Ireland
| | - Ee Ling Tan
- Computational Neuroimaging Group, Trinity College Dublin, 152-160 Pearse St, 2 D02 R590 Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Trinity College Dublin, 152-160 Pearse St, 2 D02 R590 Dublin, Ireland
- Department of Neurology, St James’s Hospital, James St, 8 D08 NHY1 Dublin, Ireland
| |
Collapse
|
2
|
Courault P, Zimmer L, Lancelot S. Toward Functional PET Imaging of the Spinal Cord. Semin Nucl Med 2024:S0001-2998(24)00066-7. [PMID: 39181820 DOI: 10.1053/j.semnuclmed.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/25/2024] [Indexed: 08/27/2024]
Abstract
At present, spinal cord imaging primarily uses magnetic resonance imaging (MRI) or computed tomography (CT), but the greater sensitivity of positron emission tomography (PET) techniques and the development of new radiotracers are paving the way for a new approach. The substantial rise in publications on PET radiotracers for spinal cord exploration indicates a growing interest in the functional and molecular imaging of this organ. The present review aimed to provide an overview of the various radiotracers used in this indication, in preclinical and clinical settings. Firstly, we outline spinal cord anatomy and associated target pathologies. Secondly, we present the state-of-the-art of spinal cord imaging techniques used in clinical practice, with their respective strengths and limitations. Thirdly, we summarize the literature on radiotracers employed in functional PET imaging of the spinal cord. In conclusion, we propose criteria for an ideal radiotracer for molecular spinal cord imaging, emphasizing the relevance of multimodal hybrid cameras, and particularly the benefits of PET-MRI integration.
Collapse
Affiliation(s)
- Pierre Courault
- Lyon Neuroscience Research Center (CRNL), INSERM, CNRSx, Lyon, France; Hospices Civils de Lyon (HCL), Lyon, France; CERMEP-Imaging Platform, Lyon, France
| | - Luc Zimmer
- Lyon Neuroscience Research Center (CRNL), INSERM, CNRSx, Lyon, France; Hospices Civils de Lyon (HCL), Lyon, France; CERMEP-Imaging Platform, Lyon, France; National Institute for Nuclear Science and Technology (INSTN), CEA, Saclay, France.
| | - Sophie Lancelot
- Lyon Neuroscience Research Center (CRNL), INSERM, CNRSx, Lyon, France; Hospices Civils de Lyon (HCL), Lyon, France; CERMEP-Imaging Platform, Lyon, France
| |
Collapse
|
3
|
Huang J, Wang J, Cui B, Yang H, Tian D, Ma J, Duan W, Chen Z, Lu J. The pons as an optimal background reference region for spinal 18F-FET PET/MRI evaluation. EJNMMI Res 2024; 14:69. [PMID: 39060564 PMCID: PMC11282009 DOI: 10.1186/s13550-024-01130-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND This study aims to evaluate the effect of various background reference regions on spinal 18F-FET PET imaging, with a focus on distinguishing between spinal tumors and myelitis. To enhance diagnostic accuracy, we investigated the pons and several other spinal cord area as potential references, given the challenges in interpreting spinal PET results. RESULTS A retrospective analysis was conducted on 30 patients, 15 with cervical myelitis and 15 with cervical tumors, who underwent O-(2-[18F]-fluoroethyl)-L-tyrosine (FET) PET/MR imaging. The stability of uptake across four regions, including the pons, C2, C2-C7, and T1-T3, was compared. The standardized uptake value ratio (SUVR) was then evaluated using various background regions, and their effectiveness in differentiating between spinal tumors and myelitis was compared. Additionally, we correlated the SUVR values derived from these regions with the Ki-67 proliferation index in tumor patients. The study found no significant difference in SUVmax (U = 110, p = 0.93) and SUVmean (U = 89, p = 0.35) values at lesion sites between myelitis and tumor patients. The pons had the highest average uptake (p < 0.001) compared to the other three regions. However, its coefficient of variation (CV) was significantly lower than that of the C2-C7 (p < 0.0001) and T1-T3 segments (p < 0.05). The SUVRmax values, calculated using the regions of pons, C2-C7 and T1-T3, were found to significantly differentiate between tumors and myelitis (p < 0.05). However, only the pons-based SUVRmean was able to significantly distinguish between the two groups (p < 0.05). Additionally, the pons-based SUVRmax (r = 0.63, p = 0.013) and SUVRmean (r = 0.67, p = 0.007) demonstrated a significant positive correlation with the Ki-67 index. CONCLUSIONS This study suggests that the pons may be considered a suitable reference region for spinal 18F-FET PET imaging, which can improve the differentiation between spinal tumors and myelitis. The significant correlation between pons-based SUVR values and the Ki-67 index further highlights the potential of this approach in assessing tumor cell proliferation.
Collapse
Affiliation(s)
- Jing Huang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China
| | - Jiyuan Wang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China
| | - Bixiao Cui
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China
| | - Hongwei Yang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China
| | - Defeng Tian
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China
| | - Jie Ma
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China
| | - Wanru Duan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zan Chen
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, China.
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Rossano S, Toyonaga T, Bini J, Nabulsi N, Ropchan J, Cai Z, Huang Y, Carson RE. Feasibility of imaging synaptic density in the human spinal cord using [ 11C]UCB-J PET. EJNMMI Phys 2022; 9:32. [PMID: 35503134 PMCID: PMC9065222 DOI: 10.1186/s40658-022-00464-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 04/20/2022] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Neuronal damage and synapse loss in the spinal cord (SC) have been implicated in spinal cord injury (SCI) and neurodegenerative disorders such as Amyotrophic Lateral Sclerosis (ALS). Current standards of diagnosis for SCI include CT or MRI imaging to evaluate injury severity. The current study explores the use of PET imaging with [11C]UCB-J, which targets the synaptic vesicle protein 2A (SV2A), in the human spinal cord, as a way to visualize synaptic density and integrity in vivo. RESULTS First, simulations of baseline and blocking [11C]UCB-J HRRT scans were performed, based on SC dimensions and SV2A distribution to predict VT, VND, and VS values. Next, human baseline and blocking [11C]UCB-J HRRT images were used to estimate these values in the cervical SC (cSC). Simulation results had excellent agreement with observed values of VT, VND, and VS from the real human data, with baseline VT, VND, and VS of 3.07, 2.15, and 0.92 mL/cm3, respectively, with a BPND of 0.43. Lastly, we explored full SC imaging with whole-body images. Using automated SC regions of interest (ROIs) for the full SC, cSC, and thoracic SC (tSC), the distribution volume ratio (DVR) was estimated using the brain gray matter as a reference region to evaluate SC SV2A density relative to the brain. In full body imaging, DVR values of full SC, cSC, and tSC were 0.115, 0.145, and 0.112, respectively. Therefore, measured [11C]UCB-J uptake, and thus SV2A density, is much lower in the SC than in the brain. CONCLUSIONS The results presented here provide evidence for the feasibility of SV2A PET imaging in the human SC, however, specific binding of [11C]UCB-J is low. Ongoing and future work include further classification of SV2A distribution in the SC as well as exploring higher-affinity PET radioligands for SC imaging.
Collapse
Affiliation(s)
- Samantha Rossano
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of Medicine, P.O. Box 208048, New Haven, CT, 06520, USA.
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| | - Takuya Toyonaga
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of Medicine, P.O. Box 208048, New Haven, CT, 06520, USA
| | - Jason Bini
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of Medicine, P.O. Box 208048, New Haven, CT, 06520, USA
| | - Nabeel Nabulsi
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of Medicine, P.O. Box 208048, New Haven, CT, 06520, USA
| | - Jim Ropchan
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of Medicine, P.O. Box 208048, New Haven, CT, 06520, USA
| | - Zhengxin Cai
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of Medicine, P.O. Box 208048, New Haven, CT, 06520, USA
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of Medicine, P.O. Box 208048, New Haven, CT, 06520, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of Medicine, P.O. Box 208048, New Haven, CT, 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
5
|
Panda A, Hintermeister HA, Hunt CH, Kendi AT. Whole-body 18-F-FDG-PET in patients with leptomeningeal disease and correlation with MRI. Nucl Med Commun 2021; 42:205-215. [PMID: 33165256 DOI: 10.1097/mnm.0000000000001317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Studies evaluating leptomeningeal disease on whole-body 18F-FDG PET are lacking. The purpose was to evaluate PET imaging of leptomeningeal disease and investigate the incremental utility of newer PET reconstructions in leptomeningeal disease. METHODS PET imaging of 56 patients with leptomeningeal disease detected initially on MRI (n = 53) or cytopathology (n = 35) were retrospectively reviewed. Regular 3-dimensional iterative reconstruction (3D IR, n = 56) and advanced reconstruction (AdvRecon, n = 41) PET images were evaluated by readers blinded to clinical and MRI findings for uptake involving cauda equina, posterior fossa and spinal cord. Spinal cord uptake pattern was classified as normal (uptake < liver), uptake = liver, conus uptake > liver, conus and cervical cord uptake > liver and multifocal/diffuse uptake > liver. SUVmax ratios of conus/liver, conus/left atrium and conus/cervical cord were compared between 3D IR and AdvRecon datasets. RESULTS Cauda equina uptake was seen in 64% and 78% on 3D IR and AdvRecon; posterior fossa uptake was seen in 52% and 54% on 3D IR and AdvRecon, respectively. Twelve percent had cauda equina or posterior fossa uptake visible only on AdvRecon. On 3D IR, normal spinal cord uptake was most common (27%); on AdvRecon, conus and cervical cord uptake > liver was most common (32%). Seven of 11 patients with normal spinal cord uptake on 3D IR were upgraded to increased uptake on AdvRecon. AdvRecon showed significantly higher conus/liver, conus/blood pool and conus/cervical cord SUVmax ratios (P < 0.0001). CONCLUSION Abnormal uptake in cauda equina, posterior fossa and spinal cord uptake are visible on FDG PET in leptomeningeal disease with increased conspicuity advanced PET reconstructions.
Collapse
Affiliation(s)
- Ananya Panda
- Department of Radiology, Nuclear Medicine Division, Mayo Clinic
| | | | - Christopher H Hunt
- Department of Radiology, Nuclear Medicine Division, Mayo Clinic
- Neuroradiology Division, Mayo Clinic, Rochester, Minnesota, USA
| | - Ayse Tuba Kendi
- Department of Radiology, Nuclear Medicine Division, Mayo Clinic
| |
Collapse
|
6
|
Alkhaja MA, Cheng LTJ, Loi HY, Sinha AK. "Hot Cord" Sign on 18F-FDG PET/CT in a Patient With Acute Myelitis Due to Neuromyelitis Optica Spectrum Disorder. Clin Nucl Med 2021; 46:74-75. [PMID: 33181735 DOI: 10.1097/rlu.0000000000003367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A 44-year-old woman presented with prolonged low-grade fever, bilateral upper limb weakness, and hyperesthesia. MRI showed hyperintense T2 signal and enhancement of the cervicothoracic spinal cord. F-FDG PET/CT was requested to investigate pyrexia of unknown origin. It demonstrated diffusely increased FDG uptake along the entire spinal cord, suggestive of extensive acute myelitis. Initial blood work was positive for antinuclear antibodies and anti-Ro/SSA antibodies. Cerebrospinal fluid analysis revealed lymphocytosis and detected the presence of neuromyelitis optica aquaporin-4-immunoglobulin G antibodies, fulfilling the criteria for diagnosis of neuromyelitis optica spectrum disorder.
Collapse
|
7
|
[ 18F]FDG uptake of the normal spinal cord in PET/MR imaging: comparison with PET/CT imaging. EJNMMI Res 2020; 10:91. [PMID: 32761394 PMCID: PMC7410944 DOI: 10.1186/s13550-020-00680-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/28/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The lack of visualization of the spinal cord hinders the evaluation of [18F]Fluoro-deoxy-glucose (FDG) uptake of the spinal cord in PET/CT. By exploiting the capability of MRI to precisely outline the spinal cord, we performed a retrospective study aimed to define normal pattern of spinal cord [18F]FDG uptake in PET/MRI. METHODS Forty-one patients with lymphoma without clinical or MRI signs of spinal cord or bone marrow involvement underwent simultaneous PET and MRI acquisition using Siemens Biograph mMR after injection of 3.5 MBq/kg body weight of [18F]FDG for staging purposes. Using a custom-made software, we placed ROIs of 3 and 9 mm in diameter in the spinal cord, lumbar CSF, and vertebral marrow that were identified on MRI at 5 levels (C2, C5, T6, T12, and L3). The SUVmax, SUVmean, and the SUVmax and SUVmean normalized (NSUVmax and NSUVmean) to the liver were measured. For comparison, the same ROIs were placed in PET-CT images obtained immediately before the PET-MRI acquisition following the same tracer injection. RESULTS On PET/MRI using the 3 mm ROI, the following average (all level excluding L3) spinal cord median (1st and 3rd quartile) values were measured: SUVmean, 1.68 (1.39 and 1.83); SUVmax, 1.92 (1.60 and 2.14); NSUVmean, 1.18 (0.93 and 1.36); and NSUVmax, 1.27 (1.01 and 1.33). Using the 9 mm ROI, the corresponding values were SUVmean, 1.41 (1.25-1.55); SUVmax, 2.41 (2.08 and 2.61); NSUVmean, 0.93 (0.79 and 1.04); and NSUVmax, 1.28 (1.02 and 1.39). Using the 3 mm ROI, the highest values of PET-MRI SUVmax, SUVmean, NSUVmax, and NSUVmean were consistently observed at C5 and the lowest at T6. Using a 9 mm ROI, the highest values were consistently observed at C5 and the lowest at T12 or T6. The spinal cord [18F]FDG-uptake values correlated with the bone marrow uptake at the same level, especially in case of NSUVmax. Comparison with PET-CT data revealed that the average SUVmax and SUVmean of the spinal cord were similar in PET-MRI and PET-CT. However, the average NSUVmax and NSUVmean of the spinal cord were higher (range 21-47%) in PET-MRI than in PET-CT. CONCLUSIONS Using a whole-body protocol, we defined the maximum and mean [18F]FDG uptake of the normal spinal cord in PET/MRI. While the observed values show the expected longitudinal distribution, they appear to be higher than those measured in PET/CT. Normalization of the SUVmax and SUVmean of the spinal cord to the liver radiotracer uptake could help in multi-institutional comparisons and studies.
Collapse
|
8
|
Cizkova D, Murgoci AN, Cubinkova V, Humenik F, Mojzisova Z, Maloveska M, Cizek M, Fournier I, Salzet M. Spinal Cord Injury: Animal Models, Imaging Tools and the Treatment Strategies. Neurochem Res 2019; 45:134-143. [PMID: 31006093 DOI: 10.1007/s11064-019-02800-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 02/06/2023]
Abstract
Spinal cord injury (SCI) often leads to irreversible neuro-degenerative changes with life-long consequences. While there is still no effective therapy available, the results of past research have led to improved quality of life for patients suffering from partial or permanent paralysis. In this review we focus on the need, importance and the scientific value of experimental animal models simulating SCI in humans. Furthermore, we highlight modern imaging tools determining the location and extent of spinal cord damage and their contribution to early diagnosis and selection of appropriate treatment. Finally, we focus on available cellular and acellular therapies and novel combinatory approaches with exosomes and active biomaterials. Here we discuss the efficacy and limitations of adult mesenchymal stem cells which can be derived from bone marrow, adipose tissue or umbilical cord blood and its Wharton's jelly. Special attention is paid to stem cell-derived exosomes and smart biomaterials due to their special properties as a delivery system for proteins, bioactive molecules or even genetic material.
Collapse
Affiliation(s)
- Dasa Cizkova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 10, Bratislava, Slovakia. .,Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81, Kosice, Slovakia. .,Inserm, U-1192-Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, Université de Lille, 59000, Lille, France.
| | - Adriana-Natalia Murgoci
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 10, Bratislava, Slovakia.,Inserm, U-1192-Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, Université de Lille, 59000, Lille, France
| | - Veronika Cubinkova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 10, Bratislava, Slovakia
| | - Filip Humenik
- Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81, Kosice, Slovakia
| | - Zuzana Mojzisova
- Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81, Kosice, Slovakia
| | - Marcela Maloveska
- Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81, Kosice, Slovakia
| | - Milan Cizek
- Department of Epizootology and Parasitology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81, Kosice, Slovakia
| | - Isabelle Fournier
- Inserm, U-1192-Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, Université de Lille, 59000, Lille, France
| | - Michel Salzet
- Inserm, U-1192-Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, Université de Lille, 59000, Lille, France
| |
Collapse
|
9
|
A Large Cohort Study of 18F Fluoro-Deoxy-Glucose Uptake in Normal Spinal Cord: Quantitative Assessment of the Contamination From Adjacent Vertebral Marrow Uptake and Validity of Normalizing the Cord Uptake Against the Lumbar Thecal Sac. J Comput Assist Tomogr 2016; 41:125-130. [PMID: 27560019 DOI: 10.1097/rct.0000000000000479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE This study aimed (1) to assess the influence of age, sex, blood glucose, and body mass index on the F fluoro-deoxy-glucose (F-FDG) uptake in normal spinal cord; (2) to quantitatively evaluate contamination of the spinal cord SUVmax by the adjacent vertebral marrow activity; and (3) to investigate the validity of normalizing spinal cord SUVmax against lumbar thecal sac SUVmax. METHODS Two hundred positron emission tomography-computed tomography examinations of subjects with normal spinal cord were retrospectively reviewed. SUVmax of spinal cord and vertebral body was obtained at C2, C5, T6, T12, and L3 levels. Pearson correlation coefficients (r) were obtained at each level between spinal cord SUVmax and vertebral marrow SUVmax, age, body mass index, and blood glucose. Cord to background ratio (CTB) was calculated as the ratio between SUVmax of spinal cord and SUVmax of L3 thecal sac. The coefficient of variation (CV) of spinal cord SUVmax was compared with the CV of CTB. RESULTS Spinal cord SUVmax was highest at C2 (mean, 1.76) and lowest at T6 (mean, 1.37) with SD of 0.32 to 0.36 SUV. Sex (P > 0.45), age (r: -0.25 to -0.06), body mass index (r: 0.19 to 0.27), and blood glucose (r: -0.17 to 0.22) had no impact on the spinal cord SUVmax. A moderate to strong positive correlation (r: 0.66-0.80) was found between spinal cord SUVmax and the corresponding vertebral marrow SUVmax. The CV of CTB was greater (0.28-0.32) than the CV of spinal cord SUVmax (0.19-0.25) across all levels. CONCLUSIONS Of the variables studied, only contamination from adjacent vertebral marrow activity significantly affected the SUVmax of spinal cord. This contamination should be corrected for when reporting spinal cord FDG uptake. Lumbar thecal sac is not a valid reference for normalizing spinal cord FDG uptake.
Collapse
|