1
|
Mahgerefteh N, Mozaffari K, Teton Z, Malkhasyan Y, Kim K, Yang I. Incidental Meningiomas: Potential Predictors of Growth and Current State of Management. Neurosurg Clin N Am 2023; 34:347-369. [PMID: 37210125 DOI: 10.1016/j.nec.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The rise in availability of neuroimaging has led to an increase in incidentally discovered meningiomas. These tumors are typically asymptomatic and tend to display slow growth. Treatment options include observation with serial monitoring, radiation, and surgery. Although optimal management is unclear, clinicians recommend a conservative approach, which preserves quality of life and limits unnecessary intervention. Several risk factors have been investigated for their potential utility in the development of prognostic models for risk assessment. Herein, the authors review the current literature on incidental meningiomas, focusing their discussion on potential predictive factors for tumor growth and appropriate management practices.
Collapse
Affiliation(s)
- Natalie Mahgerefteh
- Department of Neurosurgery, University of California, 300 Stein Plaza, Suite 562, Los Angeles, CA 90095-1761, USA
| | - Khashayar Mozaffari
- Department of Neurosurgery, University of California, 300 Stein Plaza, Suite 562, Los Angeles, CA 90095-1761, USA
| | - Zoe Teton
- Department of Neurosurgery, University of California, 300 Stein Plaza, Suite 562, Los Angeles, CA 90095-1761, USA
| | - Yelena Malkhasyan
- Department of Neurosurgery, University of California, 300 Stein Plaza, Suite 562, Los Angeles, CA 90095-1761, USA
| | - Kihong Kim
- Department of Neurosurgery, University of California, 300 Stein Plaza, Suite 562, Los Angeles, CA 90095-1761, USA
| | - Isaac Yang
- Department of Neurosurgery, University of California, 300 Stein Plaza, Suite 562, Los Angeles, CA 90095-1761, USA; Department of Radiation Oncology, 300 Stein Plaza, Suite 562, Los Angeles, CA 90095-1761, USA; Department of Head and Neck Surgery, 300 Stein Plaza, Suite 562, Los Angeles, CA 90095-1761, USA; Jonsson Comprehensive Cancer Center, 300 Stein Plaza, Suite 562, Los Angeles, CA 90095-1761, USA; Los Angeles Biomedical Research Institute, 300 Stein Plaza, Suite 562, Los Angeles, CA 90095-1761, USA; Harbor-UCLA Medical Center, 300 Stein Plaza, Suite 562, Los Angeles, CA 90095-1761, USA; David Geffen School of Medicine, Los Angeles, 100 West Carson Street, Torrance, CA 90502, USA.
| |
Collapse
|
2
|
Bailo M, Gagliardi F, Boari N, Spina A, Piloni M, Castellano A, Mortini P. Meningioma and Other Meningeal Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1405:73-97. [PMID: 37452935 DOI: 10.1007/978-3-031-23705-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Meningiomas develop from meningothelial cells and approximately account for more than 30 percent of central nervous system (CNS) tumors. They can occur anywhere in the dura, most often intracranially and at dural reflection sites. Half of the cases are usually at parasagittal/falcine and convexity locations; other common sites are sphenoid ridge, suprasellar, posterior fossa, and olfactory groove. The female-to-male ratio is approximately 2 or 3-1, and the median age at diagnosis is 65 years. Meningiomas are generally extremely slow-growing tumors; many are asymptomatic or paucisymptomatic at diagnosis and are discovered incidentally. Clinical manifestations, when present, are influenced by the tumor site and by the time course over which it develops. Meningiomas are divided into three grades. Grade I represents the vast majority of cases; they are considered typical or benign, although their CNS location can still lead to severe morbidity or mortality, resulting in a reported ten-year net survival of over 80%. Atypical (WHO grade II) meningiomas are considered "intermediate grade" malignancies and represent 5-7% of cases. They show a tendency for recurrence and malignant degeneration with a relevant increase in tumor cell migration and surrounding tissue infiltration; ten-year net survival is reported over 60%. The anaplastic subtype (WHO III) represents only 1-3% of cases, and it is characterized by a poor prognosis (ten-year net survival of 15%). The treatment of choice for these tumors stands on complete microsurgical resection in case the subsequent morbidities are assumed minimal. On the other hand, and in case the tumor is located in critical regions such as the skull base, or the patient may have accompanied comorbidities, or it is aimed to avoid intensive treatment, some other approaches, including stereotactic radiosurgery and radiotherapy, were recommended as safe and effective choices to be considered as a primary treatment option or complementary to surgery. Adjuvant radiosurgery/radiotherapy should be considered in the case of atypical and anaplastic histology, especially when a residual tumor is identifiable in postoperative imaging. A "watchful waiting" strategy appears reasonable for extremely old individuals and those with substantial comorbidities or low-performance status, while there is a reduced threshold for therapeutic intervention for relatively healthy younger individuals due to the expectation that tumor progression will inevitably necessitate proactive treatment. To treat and manage meningioma efficiently, the assessments of both neurosurgeons and radiation oncologists are essential. The possibility of other rarer tumors, including hemangiopericytomas, solitary fibrous tumors, lymphomas, metastases, melanocytic tumors, and fibrous histiocytoma, must be considered when a meningeal lesion is diagnosed, especially because the ideal diagnostic and therapeutic approaches might differ significantly in every tumor type.
Collapse
Affiliation(s)
- Michele Bailo
- Department of Neurosurgery and Gamma Knife Radiosurgery, I.R.C.C.S. Ospedale San Raffaele, Vita-Salute University, Via Olgettina 60, 20132, Milano, Italy.
| | - Filippo Gagliardi
- Department of Neurosurgery and Gamma Knife Radiosurgery, I.R.C.C.S. Ospedale San Raffaele, Vita-Salute University, Via Olgettina 60, 20132, Milano, Italy
| | - Nicola Boari
- Department of Neurosurgery and Gamma Knife Radiosurgery, I.R.C.C.S. Ospedale San Raffaele, Vita-Salute University, Via Olgettina 60, 20132, Milano, Italy
| | - Alfio Spina
- Department of Neurosurgery and Gamma Knife Radiosurgery, I.R.C.C.S. Ospedale San Raffaele, Vita-Salute University, Via Olgettina 60, 20132, Milano, Italy
| | - Martina Piloni
- Department of Neurosurgery and Gamma Knife Radiosurgery, I.R.C.C.S. Ospedale San Raffaele, Vita-Salute University, Via Olgettina 60, 20132, Milano, Italy
| | - Antonella Castellano
- Department of Neurosurgery and Gamma Knife Radiosurgery, I.R.C.C.S. Ospedale San Raffaele, Vita-Salute University, Via Olgettina 60, 20132, Milano, Italy
| | - Pietro Mortini
- Department of Neurosurgery and Gamma Knife Radiosurgery, I.R.C.C.S. Ospedale San Raffaele, Vita-Salute University, Via Olgettina 60, 20132, Milano, Italy
| |
Collapse
|
3
|
Prevalence of incidental meningiomas and gliomas on MRI: a meta-analysis and meta-regression analysis. Acta Neurochir (Wien) 2021; 163:3401-3415. [PMID: 34227013 DOI: 10.1007/s00701-021-04919-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/14/2021] [Indexed: 01/24/2023]
Abstract
BACKGROUND The chance of incidentally detecting brain tumors is increasing as the utilization of magnetic resonance imaging (MRI) becomes more prevalent. In this background, knowledge is accumulating in relation to the prediction of their clinical sequence. However, their prevalence-especially the prevalence of glioma-has not been adequately investigated according to age, sex, and region. METHOD We systematically reviewed the articles according to the PRISMA statement and calculated the prevalence of meningiomas and diffuse gliomas in adults using a generalized linear mixed model. Specifically, the differences related to age, sex, and region were investigated. RESULTS The pooled prevalence of incidental meningiomas in MRI studies was 0.52% (95% confidence interval (CI) [0.34-0.78]) in 37,697 individuals from 36 studies. A meta-regression analysis showed that the prevalence was significantly higher in elderly individuals, women, and individuals outside Asia; this remained statistically significant in the multivariate meta-regression analysis. The prevalence reached to 3% at 90 years of age. In contrast, the prevalence of gliomas in 30,918 individuals from 18 studies was 0.064% (95%CI [0.040 - 0.104]). The meta-regression analysis did not show a significant relationship between the prevalence and age, male sex, or region. The prevalence of histologically confirmed glioma was 0.026% (95%CI [0.013-0.052]). CONCLUSIONS Most of meningiomas, especially those in elderlies, remained asymptomatic, and their prevalence increased with age. However, the prevalence of incidental gliomas was much lower and did not increase with age. The number of gliomas that developed and the number that reached a symptomatic stage appeared to be balanced.
Collapse
|
4
|
Nassiri F, Wang JZ, Au K, Barnholtz-Sloan J, Jenkinson MD, Drummond K, Zhou Y, Snyder JM, Brastianos P, Santarius T, Suppiah S, Poisson L, Gaillard F, Rosenthal M, Kaufmann T, Tsang D, Aldape K, Zadeh G. Consensus core clinical data elements for meningiomas. Neuro Oncol 2021; 24:683-693. [PMID: 34791428 DOI: 10.1093/neuonc/noab259] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND With increasing molecular analyses of meningiomas, there is a need to harmonize language used to capture clinical data across centers to ensure that molecular alterations are appropriately linked to clinical variables of interest. Here the International Consortium on Meningiomas presents a set of core and supplemental meningioma-specific Common Data Elements (CDEs) to facilitate comparative and pooled analyses. METHODS The generation of CDEs followed the four-phase process similar to other National Institute of Neurological Disorders and Stroke (NINDS) CDE projects: discovery, internal validation, external validation, and distribution. RESULTS The CDEs were organized into patient- and tumor-level modules. In total, 17 core CDEs (10 patient-level and 7-tumour-level) as well as 14 supplemental CDEs (7 patient-level and 7 tumour-level) were defined and described. These CDEs are now made publicly available for dissemination and adoption. CONCLUSIONS CDEs provide a framework for discussion in the neuro-oncology community that will facilitate data sharing for collaborative research projects and aid in developing a common language for comparative and pooled analyses. The meningioma-specific CDEs presented here are intended to be dynamic parameters that evolve with time and The Consortium welcomes international feedback for further refinement and implementation of these CDEs.
Collapse
Affiliation(s)
- Farshad Nassiri
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, ON, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Justin Z Wang
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, ON, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Karolyn Au
- Division of Neurosurgery, Department of Surgery, University of Alberta, AB, Canada
| | - Jill Barnholtz-Sloan
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| | - Michael D Jenkinson
- Department of Neurosurgery, University of Liverpool, England, United Kingdom
| | - Kate Drummond
- Department of Neurosurgery, The Royal Melbourne Hospital, Melbourne, Australia
| | - Yueren Zhou
- Henry Ford Health System, Detroit, MI, United States
| | | | - Priscilla Brastianos
- Dana Farber/Harvard Cancer Center, Massachusetts General Hospital, Boston, MA, United States
| | - Thomas Santarius
- Department of Neurosurgery, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Suganth Suppiah
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, ON, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Laila Poisson
- Henry Ford Health System, Detroit, MI, United States
| | - Francesco Gaillard
- Department of Radiology, The Royal Melbourne Hospital, Melbourne, Australia
| | - Mark Rosenthal
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Timothy Kaufmann
- Department of Radiology, The Mayo Clinic, Rochester, Min, United States
| | - Derek Tsang
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Kenneth Aldape
- National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Gelareh Zadeh
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, ON, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
5
|
Ivanovic V, Seiler S, Tarraf W, Crivello E, Martinez O, Lipton RB, Isasi CR, Copello TG, Talavera GA, Gallo LC, Lamar M, Testai F, Schneiderman N, Gellman MD, Daviglus M, Gonzalez HM, DeCarli C, Lipton ML. Prevalence of incidental brain MRI findings of clinical relevance in a diverse Hispanic/Latino population. J Neuroimaging 2021; 31:1166-1175. [PMID: 34288226 PMCID: PMC10332335 DOI: 10.1111/jon.12910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE There is limited literature on the prevalence of incidental brain MRI findings in the Hispanic/Latino population, despite their increased prevalence of vascular disease and undertreatment of chronic conditions. The purpose of our study was to determine the prevalence of clinically relevant incidental findings on brain MRI examinations obtained as a part of the Study of Latinos-Investigation of NeuroCognitive Aging MRI (SOL-INCA-MRI) study. METHODS Brain MRI examinations were obtained on 1389 participants in the SOL-INCA-MRI study, a cross-sectional ancillary study of the Hispanic Community Health Study, Study of Latinos, which is a longitudinal, community-based study. Study design of SOL-INCA-MRI involves imaging cognitively normal and participants with mild cognitive impairment. Brain MRI findings were categorized as Level 1 (normal), Level 1.5 (findings of unclear medical significance), Level 2 (potential medical concern), or Level 3 (medically urgent). This article focuses on Level 2 and Level 3 findings. RESULTS The average age of the sample was 60.8 years (+/- 10.3 years), 66.1% were females. Level 2 and 3 findings were identified in 117 participants, (8.4%), of which 109 (7.8%) were recommended for medical follow-up (Level 2), and 8 (0.6%) were recommended for immediate medical attention (Level 3). Brain MRI findings consisted of chronic infarction in 33 (2.4%), vascular abnormality in 27 (1.9%), intracranial mass in 20 (1.4%), other intracranial findings in 28 (2.0%), and skull base/extracranial findings in 26 (1.9%) patients. CONCLUSION Incidental findings of clinical relevance were common among SOL-INCA-MRI participants, but rarely required urgent medical intervention.
Collapse
Affiliation(s)
- Vladimir Ivanovic
- Department of Radiology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Stephan Seiler
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Wassim Tarraf
- Wayne State University, Institute of Gerontology, Detroit, MI, USA
| | - Emily Crivello
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Oliver Martinez
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Richard B. Lipton
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Carmen R. Isasi
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | - Linda C. Gallo
- Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Melissa Lamar
- Department of Psychiatry & Behavioral Sciences, Rush University Medical Center, Rush Alzheimer’s Disease Center, Chicago, IL, USA
| | - Fernando Testai
- Department of Neurology, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Marc D. Gellman
- Department of Psychology, University of Miami, Miami, FL, USA
| | - Martha Daviglus
- University of Illinois at Chicago, Institute for Minority Health Research, Chicago, IL, USA
| | - Hector M. Gonzalez
- Department of Neurosciences, Shiley-Marcos Alzheimer’s Disease Research Center, University of California San Diego, San Diego, CA, USA
| | - Charles DeCarli
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Michael L. Lipton
- Departments of Radiology, Psychiatry and Behavioral Sciences and The Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine and Montefiore Health System, Bronx, NY, USA
| |
Collapse
|
6
|
Mitochondrial DNA sequence variation and risk of meningioma. J Neurooncol 2021; 155:319-324. [PMID: 34669147 DOI: 10.1007/s11060-021-03878-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/13/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Risk factors for meningioma include female gender, African American race, high body mass index (BMI), and exposure to ionizing radiation. Although genome-wide association studies (GWAS) have identified two nuclear genome risk loci for meningioma (rs12770228 and rs2686876), the relation between mitochondrial DNA (mtDNA) sequence variants and meningioma is unknown. METHODS We examined the association of 42 common germline mtDNA variants (minor allele frequency ≥ 5%), haplogroups, and genes with meningioma in 1080 controls and 478 meningioma cases from a case-control study conducted at medical centers in the southeastern United States. Associations were examined separately for meningioma overall and by WHO grade (n = 409 grade I and n = 69 grade II/III). RESULTS Overall, meningioma was significantly associated with being female (OR 2.85; 95% CI 2.21-3.69), self-reported African American race (OR 2.38, 95% CI 1.41-3.99), and being overweight (OR 1.48; 95% CI 1.11-1.97) or obese (OR 1.70; 95% CI 1.25-2.31). The variant m.16362T > C (rs62581341) in the mitochondrial control region was positively associated with grade II/III meningiomas (OR 2.33; 95% CI 1.14-4.77), but not grade I tumors (OR 0.99; 95% CI 0.64-1.53). Haplogroup L, a marker for African ancestry, was associated with meningioma overall (OR 2.92; 95% CI 1.01-8.44). However, after stratifying by self-reported race, this association was only apparent among the few self-reported Caucasians with this haplogroup (OR 6.35; 95% CI 1.56-25.9). No other mtDNA variant, haplogroup, or gene was associated with meningioma. CONCLUSION Common mtDNA variants and major mtDNA haplogroups do not appear to have associations with the odds of developing meningioma.
Collapse
|