1
|
Rastogi H, Chowdhury PK. Correlating the Local and Global Dynamics of an Enzyme in the Crowded Milieu. J Phys Chem B 2022; 126:3208-3223. [PMID: 35442681 DOI: 10.1021/acs.jpcb.1c09759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Enzymes are dynamic biological macromolecules, with their catalytic function(s) being largely influenced by the changes in local fluctuations of amino acid side chains as well as global structural modulations that the enzyme undergoes. Such local and global motions can be highly affected inside the crowded physiological interior of the cell. Here, we have addressed the role of dynamic structural flexibility in affecting the activation energy barrier of a flexible multidomain enzyme adenylate kinase (AK3L1, UniProtKB: Q9UIJ7). Activation energy profiles of both local (at three different sites along the polypeptide backbone) and global dynamics of the enzyme have been monitored using solvation studies on the subnanosecond time scale and tryptophan quenching studies over the temperature range of 278-323 K, respectively, under crowded conditions (Ficoll 70, Dextran 40, Dextran 70, and PEG 8). This study not only provides the site-specific mapping of dynamics but reveals that the activation energies associated with these local motions undergo a significant decrease in the presence of macromolecular crowders, providing new insights into how crowding affects internal protein dynamics. The crowded scenario also aids in enhancing the coupling between the local and global motions of the enzyme. Moreover, select portions/regions of the enzyme when taken together can well mirror the overall dynamics of the biomolecule, showing possible energy hotspots along the polypeptide backbone.
Collapse
Affiliation(s)
- Harshita Rastogi
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India 110016
| | - Pramit K Chowdhury
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India 110016
| |
Collapse
|
2
|
Rastogi H, Chowdhury PK. Understanding enzyme behavior in a crowded scenario through modulation in activity, conformation and dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140699. [PMID: 34298166 DOI: 10.1016/j.bbapap.2021.140699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 01/25/2023]
Abstract
Macromolecular crowding, inside the physiological interior, modulates the energy landscape of biological macromolecules in multiple ways. Amongst these, enzymes occupy a special place and hence understanding the function of the same in the crowded interior is of utmost importance. In this study, we have investigated the manner in which the multidomain enzyme, AK3L1 (PDB ID: 1ZD8), an isoform of adenylate kinase, has its features affected in presence of commonly used crowders (PEG 8, Dextran 40, Dextran 70, and Ficoll 70). Michaelis Menten plots reveal that the crowders in general enhance the activity of the enzyme, with the Km and Vmax values showing significant variations. Ficoll 70, induced the maximum activity for AK3L1 at 100 g/L, beyond which the activity reduced. Ensemble FRET studies were performed to provide insights into the relative domain (LID and CORE) displacements in presence of the crowders. Solvation studies reveal that the protein matrix surrounding the probe CPM (7-diethylamino-3-(4-maleimido-phenyl)-4-methylcoumarin) gets restricted in presence of the crowders, with Ficoll 70 providing the maximum rigidity, the same being linked to the decrease in the activity of the enzyme. Through our multipronged approach, we have observed a distinct correlation between domain displacement, enzyme activity and associated dynamics. Thus, keeping in mind the complex nature of enzyme activity and the surrounding bath of dense soup that the biological entity remains immersed in, indeed more such approaches need to be undertaken to have a better grasp of the "enzymes in the crowd".
Collapse
Affiliation(s)
- Harshita Rastogi
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Pramit K Chowdhury
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
3
|
Do Cellular Condensates Accelerate Biochemical Reactions? Lessons from Microdroplet Chemistry. Biophys J 2019; 115:3-8. [PMID: 29972809 DOI: 10.1016/j.bpj.2018.05.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/03/2018] [Accepted: 05/23/2018] [Indexed: 01/20/2023] Open
Abstract
Cellular condensates-phase-separated concentrates of proteins and nucleic acids-provide organizational structure for biochemistry that is distinct from membrane-bound compartments. It has been suggested that one major function of cellular condensates is to accelerate biochemical processes that are normally slow or thermodynamically unfavorable. Yet, the mechanisms leading to increased reaction rates within cellular condensates remain poorly understood. In this article, we highlight recent advances in microdroplet chemistry that accelerate reaction rates by many orders of magnitude as compared to bulk and suggest that similar mechanisms may also affect reaction kinetics in cellular condensates.
Collapse
|
4
|
Anand R, Agrawal M, Mattaparthi VS, Swaminathan R, Santra SB. Consequences of Heterogeneous Crowding on an Enzymatic Reaction: A Residence Time Monte Carlo Approach. ACS OMEGA 2019; 4:727-736. [PMID: 31459357 PMCID: PMC6649177 DOI: 10.1021/acsomega.8b02863] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/26/2018] [Indexed: 05/06/2023]
Abstract
Translational diffusion of a free substrate in crowded metabolically active spaces such as cell cytoplasm or mitochondrial matrix is punctuated by collisions and nonspecific interactions with soluble/immobile macromolecules/macrostructures in a variety of shapes/sizes. It is not understood how such disruptions alter enzyme reaction kinetics in such spaces. A novel Monte Carlo (MC) technique, "residence time MC", has been developed to study the kinetics of a simple enzyme-substrate reaction in a crowded milieu using a single immobile enzyme in the midst of diffusing substrates and products. The reaction time lost while the substrate nonspecifically interacts or is transiently trapped with ambient macromolecules is quantified by introducing the residence time "tau". Tau scales with the size of crowding macromolecules but makes the knowledge of their shape redundant. The residence time thus presents a convenient parameter to realistically mimic the sticky surroundings encountered by a diffusing substrate in heterogeneously crowded physiological spaces. Results reveal that for identical substrate concentration and excluded volume, increase in tau significantly diminished enzymatic product yield and reaction rate, slowed down substrate/product diffusion, and prolonged their relaxation times. A smooth transition from the anomalous subdiffusive motion to normal diffusion at long time limits was observed irrespective of the value of tau. The predictions from the model are shown to be in qualitative agreement with in vitro experimental data revealing the rate of alkaline phosphatase-catalyzed hydrolysis of p-nitrophenyl phosphate in the midst of 40/500/2000 kDa dextrans. Our findings from the residence time MC model also attempt to rationalize previously unexplained experimental observations in crowded enzyme kinetics literature. Furthermore, major insights to emerge from this study are the reasons why free diffusion of the substrate in crowded physiological spaces is detrimental to enzyme function. It is argued that organized enzyme clusters such as "metabolon" may perhaps exist to regulate the substrate translocation in such sticky physiological spaces to maintain optimal enzyme function. In summary, this work provides key insights explaining why absence of substrate channeling can dramatically slow down enzyme reaction rate in crowded metabolically active spaces.
Collapse
Affiliation(s)
- Rajat Anand
- Department of Biosciences and Bioengineering and Department of
Physics, Indian Institute of Technology
Guwahati, Guwahati 781039, Assam, India
| | - Manish Agrawal
- Department of Biosciences and Bioengineering and Department of
Physics, Indian Institute of Technology
Guwahati, Guwahati 781039, Assam, India
| | - Venkata Satish
Kumar Mattaparthi
- Department of Biosciences and Bioengineering and Department of
Physics, Indian Institute of Technology
Guwahati, Guwahati 781039, Assam, India
| | - Rajaram Swaminathan
- Department of Biosciences and Bioengineering and Department of
Physics, Indian Institute of Technology
Guwahati, Guwahati 781039, Assam, India
- E-mail:
| | - Sitangshu Bikas Santra
- Department of Biosciences and Bioengineering and Department of
Physics, Indian Institute of Technology
Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
5
|
Stroberg W, Schnell S. On the origin of non-membrane-bound organelles, and their physiological function. J Theor Biol 2017; 434:42-49. [PMID: 28392184 DOI: 10.1016/j.jtbi.2017.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/29/2017] [Accepted: 04/05/2017] [Indexed: 12/28/2022]
Abstract
The origin of cellular compartmentalization has long been viewed as paralleling the origin of life. Historically, membrane-bound organelles have been presented as the canonical examples of compartmentalization. However, recent interest in cellular compartments that lack encompassing membranes has forced biologists to reexamine the form and function of cellular organization. The intracellular environment is now known to be full of transient macromolecular structures that are essential to cellular function, especially in relation to RNA regulation. Here we discuss key findings regarding the physicochemical principles governing the formation and function of non-membrane-bound organelles. Particularly, we focus how the physiological function of non-membrane-bound organelles depends on their molecular structure. We also present a potential mechanism for the formation of non-membrane-bound organelles. We conclude with suggestions for future inquiry into the diversity of roles played by non-membrane bound organelles.
Collapse
Affiliation(s)
- Wylie Stroberg
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Santiago Schnell
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Brehm Center for Diabetes Research, University of Michigan Medical School, Ann Arbor, MI 48105, USA.
| |
Collapse
|
6
|
Meinecke L, Eriksson M. Excluded volume effects in on- and off-lattice reaction-diffusion models. IET Syst Biol 2017; 11:55-64. [PMID: 28476973 PMCID: PMC8687331 DOI: 10.1049/iet-syb.2016.0021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 04/05/2024] Open
Abstract
Mathematical models are important tools to study the excluded volume effects on reaction-diffusion systems, which are known to play an important role inside living cells. Detailed microscopic simulations with off-lattice Brownian dynamics become computationally expensive in crowded environments. In this study, the authors therefore investigate to which extent on-lattice approximations, the so-called cellular automata models, can be used to simulate reactions and diffusion in the presence of crowding molecules. They show that the diffusion is most severely slowed down in the off-lattice model, since randomly distributed obstacles effectively exclude more volume than those ordered on an artificial grid. Crowded reaction rates can be both increased and decreased by the grid structure and it proves important to model the molecules with realistic sizes when excluded volume is taken into account. The grid artefacts increase with increasing crowder density and they conclude that the computationally more efficient on-lattice simulations are accurate approximations only for low crowder densities.
Collapse
Affiliation(s)
- Lina Meinecke
- Department of Information Technology, Uppsala University, Uppsala, Sweden.
| | - Markus Eriksson
- Department of Information Technology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Wilcox AE, LoConte MA, Slade KM. Effects of Macromolecular Crowding on Alcohol Dehydrogenase Activity Are Substrate-Dependent. Biochemistry 2016; 55:3550-8. [PMID: 27283046 DOI: 10.1021/acs.biochem.6b00257] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Enzymes operate in a densely packed cellular environment that rarely matches the dilute conditions under which they are studied. To better understand the ramifications of this crowding, the Michaelis-Menten kinetics of yeast alcohol dehydrogenase (YADH) were monitored spectrophotometrically in the presence of high concentrations of dextran. Crowding decreased the maximal rate of the reaction by 40% for assays with ethanol, the primary substrate of YADH. This observation was attributed to slowed release of the reduced β-nicotinamide adenine dinucleotide product, which is rate-limiting. In contrast, when larger alcohols were used as the YADH substrate, the rate-limiting step becomes hydride transfer and crowding instead increased the maximal rate of the reaction by 20-40%. This work reveals the importance of considering enzyme mechanism when evaluating the ways in which crowding can alter kinetics.
Collapse
Affiliation(s)
- A E Wilcox
- Department of Chemistry, Hobart and William Smith Colleges , Geneva, New York 14456, United States
| | - Micaela A LoConte
- Department of Chemistry, Hobart and William Smith Colleges , Geneva, New York 14456, United States
| | - Kristin M Slade
- Department of Chemistry, Hobart and William Smith Colleges , Geneva, New York 14456, United States
| |
Collapse
|
8
|
|
9
|
Abstract
An appreciable part of enzymes operating in vivo is associated with lipid membranes. The function of such enzymes can be influenced by the presence of domains containing proteins and/or composed of different lipids. The corresponding experimental model-system studies can be performed under well controlled conditions, e.g., on a planar supported lipid bilayer or surface-immobilized vesicles. To clarify what may happen in such systems, we propose general kinetic equations describing the enzyme-catalyzed substrate conversion occurring via the Michaelis-Menten (MM) mechanism on a membrane with domains which do not directly participate in reaction. For two generic situations when a relatively slow reaction takes place primarily in or outside domains, we take substrate saturation and lateral substrate-substrate interactions at domains into account and scrutinize the dependence of the reaction rate on the average substrate coverage. With increasing coverage, depending on the details, the reaction rate reaches saturation via an inflection point or monotonously as in the conventional MM case. In addition, we show analytically the types of reaction kinetics occurring primarily at domain boundaries. In the physically interesting situation when the domain growth is fast on the reaction time scale, the latter kinetics are far from conventional. The opposite situation when the reaction is fast and controlled by diffusion has been studied by using the Monte Carlo technique. The corresponding results indicate that the dependence of the reaction kinetics on the domain size may be weak.
Collapse
Affiliation(s)
- Vladimir P Zhdanov
- Division of Biological Physics, Department of Applied Physics, Chalmers University of Technology, SE-41296 Göteborg, Sweden. Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | | |
Collapse
|
10
|
Balcells C, Pastor I, Vilaseca E, Madurga S, Cascante M, Mas F. Macromolecular crowding effect upon in vitro enzyme kinetics: mixed activation-diffusion control of the oxidation of NADH by pyruvate catalyzed by lactate dehydrogenase. J Phys Chem B 2014; 118:4062-8. [PMID: 24660904 DOI: 10.1021/jp4118858] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Enzyme kinetics studies have been usually designed as dilute solution experiments, which differ substantially from in vivo conditions. However, cell cytosol is crowded with a high concentration of molecules having different shapes and sizes. The consequences of such crowding in enzymatic reactions remain unclear. The aim of the present study is to understand the effect of macromolecular crowding produced by dextran of different sizes and at diverse concentrations in the well-known reaction of oxidation of NADH by pyruvate catalyzed by L-lactate dehydrogenase (LDH). Our results indicate that the reaction rate is determined by both the occupied volume and the relative size of dextran obstacles with respect to the enzyme present in the reaction. Moreover, we analyzed the influence of macromolecular crowding on the Michaelis-Menten constants, vmax and Km. The obtained results show that only high concentrations and large sizes of dextran reduce both constants suggesting a mixed activation-diffusion control of this enzymatic reaction due to the dextran crowding action. From our knowledge, this is the first experimental study that depicts mixed activation-diffusion control in an enzymatic reaction due to the effect of crowding.
Collapse
Affiliation(s)
- Cristina Balcells
- Department of Physical Chemistry and Research Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona (UB) , 08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|