1
|
Baabdulla AA, Hillen T. Oscillations in a Spatial Oncolytic Virus Model. Bull Math Biol 2024; 86:93. [PMID: 38896363 DOI: 10.1007/s11538-024-01322-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
Virotherapy treatment is a new and promising target therapy that selectively attacks cancer cells without harming normal cells. Mathematical models of oncolytic viruses have shown predator-prey like oscillatory patterns as result of an underlying Hopf bifurcation. In a spatial context, these oscillations can lead to different spatio-temporal phenomena such as hollow-ring patterns, target patterns, and dispersed patterns. In this paper we continue the systematic analysis of these spatial oscillations and discuss their relevance in the clinical context. We consider a bifurcation analysis of a spatially explicit reaction-diffusion model to find the above mentioned spatio-temporal virus infection patterns. The desired pattern for tumor eradication is the hollow ring pattern and we find exact conditions for its occurrence. Moreover, we derive the minimal speed of travelling invasion waves for the cancer and for the oncolytic virus. Our numerical simulations in 2-D reveal complex spatial interactions of the virus infection and a new phenomenon of a periodic peak splitting. An effect that we cannot explain with our current methods.
Collapse
Affiliation(s)
- Arwa Abdulla Baabdulla
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Canada.
| | - Thomas Hillen
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Canada
| |
Collapse
|
2
|
Guo E, Dobrovolny HM. Mathematical Modeling of Oncolytic Virus Therapy Reveals Role of the Immune Response. Viruses 2023; 15:1812. [PMID: 37766219 PMCID: PMC10536413 DOI: 10.3390/v15091812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Oncolytic adenoviruses (OAds) present a promising path for cancer treatment due to their selectivity in infecting and lysing tumor cells and their ability to stimulate the immune response. In this study, we use an ordinary differential equation (ODE) model of tumor growth inhibited by oncolytic virus activity to parameterize previous research on the effect of genetically re-engineered OAds in A549 lung cancer tumors in murine models. We find that the data are best fit by a model that accounts for an immune response, and that the immune response provides a mechanism for elimination of the tumor. We also find that parameter estimates for the most effective OAds share characteristics, most notably a high infection rate and low viral clearance rate, that might be potential reasons for these viruses' efficacy in delaying tumor growth. Further studies observing E1A and P19 recombined viruses in different tumor environments may further illuminate the extent of the effects of these genetic modifications.
Collapse
Affiliation(s)
| | - Hana M. Dobrovolny
- Department of Physics & Astronomy, Texas Christian University, Fort Worth, TX 76109, USA
| |
Collapse
|
3
|
Gao L, Tan Y, Yang J, Xiang C. Dynamic analysis of an age structure model for oncolytic virus therapy. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:3301-3323. [PMID: 36899582 DOI: 10.3934/mbe.2023155] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cancer is recognized as one of the serious diseases threatening human health. Oncolytic therapy is a safe and effective new cancer treatment method. Considering the limited ability of uninfected tumor cells to infect and the age of infected tumor cells have a significant effect on oncolytic therapy, an age-structured model of oncolytic therapy involving Holling-Ⅱ functional response is proposed to investigate the theoretical significance of oncolytic therapy. First, the existence and uniqueness of the solution is obtained. Furthermore, the stability of the system is confirmed. Then, the local stability and global stability of infection-free homeostasis are studied. The uniform persistence and local stability of the infected state are studied. The global stability of the infected state is proved by constructing the Lyapunov function. Finally, the theoretical results are verified by numerical simulation. The results show that when the tumor cells are at the appropriate age, injection of the right amount of oncolytic virus can achieve the purpose of tumor treatment.
Collapse
Affiliation(s)
- Lu Gao
- Mathematics and Statistics, Chongqing Jiaotong University, 400074, Chongqing, China
| | - Yuanshun Tan
- Mathematics and Statistics, Chongqing Jiaotong University, 400074, Chongqing, China
| | - Jin Yang
- Mathematics and Statistics, Chongqing Jiaotong University, 400074, Chongqing, China
| | - Changcheng Xiang
- Mathematics and Statistics, Hubei University for Nationalities, Enshi, 445000, Hubei, China
| |
Collapse
|
4
|
Alsisi A, Eftimie R, Trucu D. Nonlocal multiscale modelling of tumour-oncolytic viruses interactions within a heterogeneous fibrous/non-fibrous extracellular matrix. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:6157-6185. [PMID: 35603396 DOI: 10.3934/mbe.2022288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study we investigate computationally tumour-oncolytic virus (OV) interactions that take place within a heterogeneous extracellular matrix (ECM). The ECM is viewed as a mixture of two constitutive phases, namely a fibre phase and a non-fibre phase. The multiscale mathematical model presented here focuses on the nonlocal cell-cell and cell-ECM interactions, and how these interactions might be impacted by the infection of cancer cells with the OV. At macroscale we track the kinetics of cancer cells, virus particles and the ECM. At microscale we track (i) the degradation of ECM by matrix degrading enzymes (MDEs) produced by cancer cells, which further influences the movement of tumour boundary; (ii) the re-arrangement of the microfibres that influences the re-arrangement of macrofibres (i.e., fibres at macroscale). With the help of this new multiscale model, we investigate two questions: (i) whether the infected cancer cell fluxes are the result of local or non-local advection in response to ECM density; and (ii) what is the effect of ECM fibres on the the spatial spread of oncolytic viruses and the outcome of oncolytic virotherapy.
Collapse
Affiliation(s)
- Abdulhamed Alsisi
- Division of Mathematics, University of Dundee, Dundee DD1 4HN, United Kingdom
| | - Raluca Eftimie
- Laboratoire Mathematiques de Besançon, UMR-CNRS 6623, Université de Bourgogne Franche-Comté, 16 Route de Gray, Besançon, France
| | - Dumitru Trucu
- Division of Mathematics, University of Dundee, Dundee DD1 4HN, United Kingdom
| |
Collapse
|
5
|
Malinzi J, Basita KB, Padidar S, Adeola HA. Prospect for application of mathematical models in combination cancer treatments. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
6
|
Investigating Macrophages Plasticity Following Tumour-Immune Interactions During Oncolytic Therapies. Acta Biotheor 2019; 67:321-359. [PMID: 31410657 PMCID: PMC6825040 DOI: 10.1007/s10441-019-09357-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 08/02/2019] [Indexed: 12/22/2022]
Abstract
Over the last few years, oncolytic virus therapy has been recognised as a promising approach in cancer treatment, due to the potential of these viruses to induce systemic anti-tumour immunity and selectively killing tumour cells. However, the effectiveness of these viruses depends significantly on their interactions with the host immune responses, both innate (e.g., macrophages, which accumulate in high numbers inside solid tumours) and adaptive (e.g., \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {CD8}^{+}$$\end{document}CD8+ T cells). In this article, we consider a mathematical approach to investigate the possible outcomes of the complex interactions between two extreme types of macrophages (M1 and M2 cells), effector \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {CD8}^{+}$$\end{document}CD8+ T cells and an oncolytic Vesicular Stomatitis Virus (VSV), on the growth/elimination of B16F10 melanoma. We discuss, in terms of VSV, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {CD8}^{+}$$\end{document}CD8+ and macrophages levels, two different types of immune responses which could ensure tumour control and eventual elimination. We show that both innate and adaptive anti-tumour immune responses, as well as the oncolytic virus, could be very important in delaying tumour relapse and eventually eliminating the tumour. Overall this study supports the use mathematical modelling to increase our understanding of the complex immune interaction following oncolytic virotherapies. However, the complexity of the model combined with a lack of sufficient data for model parametrisation has an impact on the possibility of making quantitative predictions.
Collapse
|
7
|
Alzahrani T, Eftimie R, Trucu D. Multiscale modelling of cancer response to oncolytic viral therapy. Math Biosci 2019; 310:76-95. [DOI: 10.1016/j.mbs.2018.12.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 12/29/2018] [Accepted: 12/29/2018] [Indexed: 12/29/2022]
|
8
|
Mathematical Analysis of a Mathematical Model of Chemovirotherapy: Effect of Drug Infusion Method. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2019; 2019:7576591. [PMID: 30984283 PMCID: PMC6432739 DOI: 10.1155/2019/7576591] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/14/2019] [Accepted: 01/28/2019] [Indexed: 12/31/2022]
Abstract
A mathematical model for the treatment of cancer using chemovirotherapy is developed with the aim of determining the efficacy of three drug infusion methods: constant, single bolus, and periodic treatments. The model is in the form of ODEs and is further extended into DDEs to account for delays as a result of the infection of tumor cells by the virus and chemotherapeutic drug responses. Analysis of the model is carried out for each of the three drug infusion methods. Analytic solutions are determined where possible and stability analysis of both steady state solutions for the ODEs and DDEs is presented. The results indicate that constant and periodic drug infusion methods are more efficient compared to a single bolus injection. Numerical simulations show that with a large virus burst size, irrespective of the drug infusion method, chemovirotherapy is highly effective compared to either treatments. The simulations further show that both delays increase the period within which a tumor can be cleared from body tissue.
Collapse
|
9
|
A mathematical approach to effects of CTLs on cancer virotherapy in the second injection of virus. J Theor Biol 2018; 453:78-87. [PMID: 29782928 DOI: 10.1016/j.jtbi.2018.05.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/27/2018] [Accepted: 05/17/2018] [Indexed: 11/22/2022]
Abstract
This paper proposes a planar delay differential equation for cancer virotherapy. The model simulates the situation in which an oncolytic virus is injected for the second time, and the immune system suppresses the viral infection with a time delay. Our purpose is to provide theoretical conditions so that the therapy can be continued successfully. With the help of the characteristic equation, we examine the singularities and their local stability. Hopf bifurcation is also investigated around the endemic singularity. It is shown that there is a sequence of Hopf bifurcations, but the Hopf cycles do not persist continuously between the two sequential bifurcations. Finally, we see that virotherapy can be conducted successfully by controlling the delay parameter.
Collapse
|
10
|
Malinzi J, Eladdadi A, Sibanda P. Modelling the spatiotemporal dynamics of chemovirotherapy cancer treatment. JOURNAL OF BIOLOGICAL DYNAMICS 2017; 11:244-274. [PMID: 28537127 DOI: 10.1080/17513758.2017.1328079] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Chemovirotherapy is a combination therapy with chemotherapy and oncolytic viruses. It is gaining more interest and attracting more attention in the clinical setting due to its effective therapy and potential synergistic interactions against cancer. In this paper, we develop and analyse a mathematical model in the form of parabolic non-linear partial differential equations to investigate the spatiotemporal dynamics of tumour cells under chemovirotherapy treatment. The proposed model consists of uninfected and infected tumour cells, a free virus, and a chemotherapeutic drug. The analysis of the model is carried out for both the temporal and spatiotemporal cases. Travelling wave solutions to the spatiotemporal model are used to determine the minimum wave speed of tumour invasion. A sensitivity analysis is performed on the model parameters to establish the key parameters that promote cancer remission during chemovirotherapy treatment. Model analysis of the temporal model suggests that virus burst size and virus infection rate determine the success of the virotherapy treatment, whereas travelling wave solutions to the spatiotemporal model show that tumour diffusivity and growth rate are critical during chemovirotherapy. Simulation results reveal that chemovirotherapy is more effective and a good alternative to either chemotherapy or virotherapy, which is in agreement with the recent experimental studies.
Collapse
Affiliation(s)
- Joseph Malinzi
- a Department of Mathematics and Applied Mathematics , University of Pretoria , Hatfield , South Africa
| | - Amina Eladdadi
- b Department of Mathematics , The College of Saint Rose , Albany , New York , USA
| | - Precious Sibanda
- c School of Mathematics, Statistics, and Computer Science , University of KwaZulu Natal , Scottsville , South Africa
| |
Collapse
|
11
|
Stoica S, Magoulas GE, Antoniou AI, Suleiman S, Cassar A, Gatt L, Papaioannou D, Athanassopoulos CM, Schembri-Wismayer P. Synthesis of minoxidil conjugates and their evaluation as HL-60 differentiation agents. Bioorg Med Chem Lett 2016; 26:1145-50. [PMID: 26832215 DOI: 10.1016/j.bmcl.2016.01.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 01/28/2023]
Abstract
Activation of minoxidil (MNX) with N,N'-carbonyldiimidazole and coupling with natural polyamines (PAs) and commercially available aliphatic or aromatic amines provided a series of new conjugates which were evaluated for their ability to induce differentiation to HL-60 acute myeloid leukemia cancer cells, using a modified NBTZ reduction test. Although neither MNX nor 4,4'-methylenedianiline (MDA) or 2,7-diaminofluorene (DAF), alone or in combination, had any effect, the MNX-spermine (SPM) conjugate (11) and the conjugates 7 and 8 of MNX with MDA and DAF exhibited a differentiation-inducing effect at a concentration of 10 μM without being toxic on proliferating human peripheral blood mononuclear cells.
Collapse
Affiliation(s)
- Sonia Stoica
- Anatomy Department, Faculty of Medicine and Surgery, University of Malta, Malta
| | - George E Magoulas
- Laboratory of Synthetic Organic Chemistry, Department of Chemistry, University of Patras, GR-26504 Patras, Greece
| | - Antonia I Antoniou
- Laboratory of Synthetic Organic Chemistry, Department of Chemistry, University of Patras, GR-26504 Patras, Greece
| | - Sherif Suleiman
- Anatomy Department, Faculty of Medicine and Surgery, University of Malta, Malta
| | - Analisse Cassar
- Anatomy Department, Faculty of Medicine and Surgery, University of Malta, Malta
| | - Lucienne Gatt
- Anatomy Department, Faculty of Medicine and Surgery, University of Malta, Malta
| | - Dionissios Papaioannou
- Laboratory of Synthetic Organic Chemistry, Department of Chemistry, University of Patras, GR-26504 Patras, Greece
| | | | | |
Collapse
|