1
|
Dixon AL, Oliveira ARS, Cohnstaedt LW, Mitzel D, Mire C, Cernicchiaro N. Revisiting the risk of introduction of Japanese encephalitis virus (JEV) into the United States - An updated semi-quantitative risk assessment. One Health 2024; 19:100879. [PMID: 39253386 PMCID: PMC11381889 DOI: 10.1016/j.onehlt.2024.100879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
Japanese encephalitis virus (JEV) is associated with encephalitis in humans and reproductive and neurological illness in pigs. JEV has expanded beyond its native distribution in southeast Asia, with identifications in Europe (2010) and Africa (2016), and most recently, its spread into mainland Australia (2021-2022). The introduction of JEV into the United States (US) is a public health risk, and could also impact animal health and the food supply. To efficiently and cost-effectively manage risk, a better understanding of how and where diseases will be introduced, transmitted, and spread is required. To achieve this objective, we updated our group's previous qualitative risk assessment using an established semi-quantitative risk assessment tool (MINTRISK) to compare the overall rate of introduction and risk, including impacts, of JEV in seven US regions. The rate of introduction from the current region of distribution was considered negligible for the Northeast, Midwest, Rocky Mountain, West, Alaska, and Hawaii regions. The South region was the only region with a pathway that had a non-negligible rate of introduction; infected mosquito eggs and larvae introduced via imported used tires (very low; 95% uncertainty interval (UI) = negligible to high). The overall risk estimate for the South was very high (95% UI = very low to very high). Based on this risk assessment, the South region should be prioritized for surveillance activities to ensure the early detection of JEV. The assumptions used in this risk assessment, due to the lack of information about the global movement of mosquitoes, number of feral pigs in the US, the role of non-ardeid wild birds in transmission, and the magnitude of the basic reproduction ratio of JEV in a novel region, need to be fully considered as these impact the estimated probability of establishment.
Collapse
Affiliation(s)
- Andrea L Dixon
- Center for Outcomes Research and Epidemiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Ana R S Oliveira
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Lee W Cohnstaedt
- National Bio- and Agro-Defense Facility, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS, USA
| | - Dana Mitzel
- National Bio- and Agro-Defense Facility, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS, USA
| | - Chad Mire
- National Bio- and Agro-Defense Facility, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS, USA
| | - Natalia Cernicchiaro
- Center for Outcomes Research and Epidemiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
2
|
Yan WL, Sun HT, Zhao YC, Hou XW, Zhang M, Zhao Q, Elsheikha HM, Ni HB. Global prevalence of Plasmodium infection in wild birds: A systematic review and meta-analysis. Res Vet Sci 2024; 168:105136. [PMID: 38183894 DOI: 10.1016/j.rvsc.2024.105136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/28/2023] [Accepted: 01/01/2024] [Indexed: 01/08/2024]
Abstract
Avian malaria is a vector-borne parasitic disease caused by Plasmodium infection transmitted to birds by mosquitoes. The aim of this systematic review was to analyze the global prevalence of malaria and risk factors associated with infection in wild birds. A systematic search of the databases CNKI, WanFang, VIP, PubMed, and ScienceDirect was performed from database inception to 24 February 2023. The search identified 3181 retrieved articles, of which 52 articles met predetermined inclusion criteria. Meta-analysis was performed using the random-effects model. The estimated pooled global prevalence of Plasmodium infection in wild birds was 16%. Sub-group analysis showed that the highest prevalence was associated with adult birds, migrant birds, North America, tropical rainforest climate, birds captured by mist nets, detection of infection by microscopy, medium quality studies, and studies published after 2016. Our study highlights the need for more understanding of Plasmodium prevalence in wild birds and identifying risk factors associated with infection to inform future infection control measures.
Collapse
Affiliation(s)
- Wei-Lan Yan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong Province, PR China; College of Life Science, Changchun Sci-Tech University, Shuangyang 130600, Jilin Province, PR China
| | - He-Ting Sun
- Center of Prevention and Control Biological Disaster, State Forestry and Grassland Administration, Shenyang 110034, Liaoning Province, PR China
| | - Yi-Chen Zhao
- Academy of Forestry Inventory and Planning, National Forestry and Grassland Administration, Beijing 100714, PR China
| | - Xin-Wen Hou
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong Province, PR China
| | - Miao Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong Province, PR China
| | - Quan Zhao
- College of Life Science, Changchun Sci-Tech University, Shuangyang 130600, Jilin Province, PR China.
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, UK.
| | - Hong-Bo Ni
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong Province, PR China
| |
Collapse
|
3
|
Zhang F, Qiu Z, Huang A, Cheng Y, Fan G. Global dynamics and bifurcation analysis of an insect-borne plant disease model with two transmission routes. INT J BIOMATH 2022. [DOI: 10.1142/s1793524522500553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Huanglongbing (HLB) is a plant disease mainly spread by the insect-borne citrus psyllid. It is the most destructive citrus pathosystem worldwide. To understand the impact of sexual transmission on HLB dynamics, we propose a host–vector–HLB compartment model incorporating two transmission routes. The basic reproduction number [Formula: see text] is derived. Various interventions of the disease are assessed. We also investigate the effect of different incidence functions to simulate sexual transmission. For the case of sublinear incidence functions, the disease-free equilibrium is globally asymptotically stable (GAS) provided [Formula: see text]. For mass action incidence of sexual transmission, the endemic equilibrium is GAS provided [Formula: see text]. However, under nonlinear incidence, it is proved that the model may exhibit backward bifurcation. Theoretical and numerical studies reveal that (i) different forces of infection between heterosexual psyllids in the model may have a distinct impact on disease dynamics; (ii) sensitivity analysis shows that for [Formula: see text], the transmission rate between host and vector is more sensitive parameter than that between heterosexual psyllids; (iii) if the sexual transmission is ignored, the disease burden is likely to be underestimated in comparison with realistic scenarios; (iv) in the absence of chemical insecticides, the combined use of yellow sticky traps and injection of nutrient solutions can be more effective in suppressing the spread of HLB. These findings provide valuable insights for public policymakers to determine the long-term viability of implemented HLB management strategies and highlight the urgency of finding sustainable HLB solutions.
Collapse
Affiliation(s)
- Fumin Zhang
- School of Mathematics and Statistics, Nanjing University of Science and Technology, Nanjing, P. R. China
- Key Laboratory of Jiangxi Province for Numerical Simulation and Emulation Techniques, Gannan Normal University, Ganzhou, P. R. China
| | - Zhipeng Qiu
- Interdisciplinary Center for Fundamental and Frontier Sciences, Nanjing University of Science and Technology, Jiangyin, P. R. China
| | - Aijun Huang
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, P. R. China
| | - Yan Cheng
- College of Mathematics, Taiyuan University of Technology, Taiyuan, P. R. China
| | - Guihong Fan
- Department of Mathematics, Columbus State University, Columbus, GA, USA
| |
Collapse
|
4
|
Chathuranga WGD, Fernando BR, Weereratne TC, Karunaratne SHPP, De Silva WAPP. Blood parasites of bird communities in Sri Lanka and their mosquito vectors. Parasitol Res 2021; 120:693-703. [PMID: 33452590 DOI: 10.1007/s00436-021-07049-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 01/07/2021] [Indexed: 10/22/2022]
Abstract
Avian blood parasites have been shown to have significant health effects on avifauna worldwide. Sri Lanka, a tropical island rich with resident and migratory birds, has not been properly evaluated for avian blood parasites or their vectors. We investigated the presence of avian haemoparasites in Sri Lankan birds and the potential mosquito vectors of those pathogens. Blood samples were collected from local/migratory birds captured by standard mist nets from Anawilundawa bird sanctuary, Hanthana mountain range, and the University of Peradeniya park. Mosquitoes were collected from Halgolla forest reserve and the forest patches in Kurunegala and Gampola areas in addition to the above mist-netting localities. Part of the mitochondrial cytochrome b (cytb) gene was amplified and sequenced to detect the presence of haemoparasites from avian blood samples (86) and mosquito samples (480). Blood parasites of the two genera, i.e., Haemoproteus (4 species; Haemoproteus sp. 1-4) and Plasmodium (5 species; Plasmodium sp. 1-5) were identified from seven bird species (four resident and three migratory). Among these, three bird species (Red-vented bulbul (3/16), Asian Brown flycatcher (1/1), and India pitta (1/1)) were positive for Plasmodium spp., while four (Yellow-browed bulbul (1/4), oriental white-eye (1/4), brown-headed Barbet (1/4), and Indian blue robin (1/1)) were positive for Haemoproteus spp. Two mosquito species were also positive for Plasmodium (3) and Haemoproteus (1) species. Phylogenetic analysis and haplotype networks created using positive sequences of haemoparasites showed that a Plasmodium clade was shared by Cx nigropunctatus mosquitoes and the migratory bird, Indian pitta. The majority (85%) of the Plasmodium and Haemoproteus sequences of this study were not linked to the well-characterized species suggesting the distinct nature of the lineages. Associations between mosquito species and blood parasites of birds suggest the possible vector status of these mosquitoes.
Collapse
Affiliation(s)
- W G D Chathuranga
- Department of Zoology, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka.,Postgraduate Institute of Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - B R Fernando
- Department of Veterinary Public Health and Pharmacology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - T C Weereratne
- Department of Zoology, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - S H P P Karunaratne
- Department of Zoology, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka
| | | |
Collapse
|