1
|
Amer AM, Charnock C, Nguyen S. Novel Teixobactin Analogues Show Promising In Vitro Activity on Biofilm Formation by Staphylococcus aureus and Enterococcus faecalis. Curr Microbiol 2024; 81:349. [PMID: 39254872 PMCID: PMC11387452 DOI: 10.1007/s00284-024-03857-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 08/19/2024] [Indexed: 09/11/2024]
Abstract
The treatment of infections caused by biofilm-forming organisms is challenging. The newly discovered antibiotic teixobactin shows activity against a wide range of biofilm-forming bacteria. However, the laborious and low-yield chemical synthesis of teixobactin complicates its further development for clinical application. The use of more easily synthesized teixobactin analogues may offer promise in this regard. In this article, three newly developed analogues were tested for efficacy against Staphylococcus aureus and Enterococcus faecalis. Minimum inhibitory and -bactericidal concentrations were investigated. MIC values for S. aureus and E. faecalis ranged from 0.5-2 and 2-4 μg/mL, respectively. Moreover, the ability of the analogues to prevent biofilm formation and to inactivate bacterial cells in already established S. aureus biofilm on medical grade materials (PVC and PTFE) used in the production of infusion tubing and catheters were also tested. The analogues showed an ability to prevent biofilm formation and inactivate bacterial cells in established biofilms at concentrations as low as 1-2 μg/mL. Confocal laser scanning microscopy showed that the most promising analogue (TB3) inactivated S. aureus cells in a preformed biofilm and gave a reduction in biovolume. The relative ease of synthesis of the analogues and their in vitro efficacy, makes them promising candidates for pharmaceutical development.
Collapse
Affiliation(s)
- Ahmed M Amer
- Department of Life Sciences and Health, Oslo Metropolitan University (OsloMet), Pilestredet 50, 0167, Oslo, Norway.
| | - Colin Charnock
- Department of Life Sciences and Health, Oslo Metropolitan University (OsloMet), Pilestredet 50, 0167, Oslo, Norway
| | - Sanko Nguyen
- Department of Life Sciences and Health, Oslo Metropolitan University (OsloMet), Pilestredet 50, 0167, Oslo, Norway
| |
Collapse
|
2
|
Zhu L, Yang X, Fu X, Yang P, Lin X, Wang F, Shen Z, Wang J, Sun F, Qiu Z. Pheromone cCF10 inhibits the antibiotic persistence of Enterococcus faecalis by modulating energy metabolism. Front Microbiol 2024; 15:1408701. [PMID: 39040910 PMCID: PMC11260814 DOI: 10.3389/fmicb.2024.1408701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Introduction Bacterial resistance presents a major challenge to both the ecological environment and human well-being, with persistence playing a key role. Multiple studies were recently undertaken to examine the factors influencing the formation of persisters and the underlying process, with a primary focus on Gram-negative bacteria and Staphylococcus aureus (Gram-positive bacteria). Enterococcus faecalis (E. faecalis) is capable of causing a variety of infectious diseases, but there have been few studies of E. faecalis persisters. Previous studies have shown that the sex pheromone cCF10 secreted by E. faecalis induces conjugative plasmid transfer. However, whether the pheromone cCF10 regulates the persistence of E. faecalis has not been investigated. Methods As a result, we investigated the effect and potential molecular mechanism of pheromone cCF10 in regulating the formation of persisters in E. faecalis OG1RF using a persistent bacteria model. Results and discussion The metabolically active E. faecalis OG1RF reached a persistence state and temporarily tolerated lethal antibiotic concentrations after 8 h of levofloxacin hydrochloride (20 mg/mL) exposure, exhibiting a persistence rate of 0.109 %. During the growth of E. faecalis OG1RF, biofilm formation was a critical factor contributing to antibiotic persistence, whereas 10 ng/mL cCF10 blocked persister cell formation. Notably, cCF10 mediated the antibiotic persistence of E. faecalis OG1RF via regulating metabolic activity rather than suppressing biofilm formation. The addition of cCF10 stimulated the Opp system and entered bacterial cells, inhibiting (p)ppGpp accumulation, thus maintaining the metabolically active state of bacteria and reducing persister cell generation. These findings offer valuable insights into the formation, as well as the control mechanism of E. faecalis persisters.
Collapse
Affiliation(s)
- Li Zhu
- School of Environmental and Chemical Engineering, Xi’an Polytechnic University, Xi’an, China
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xiaobo Yang
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xinyue Fu
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Panpan Yang
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Xiaoli Lin
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- Key Laboratory of Karst Geological Resources and Environment, Guizhou University, Guizhou, China
| | - Feng Wang
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Zhiqiang Shen
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Jingfeng Wang
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Feilong Sun
- School of Environmental and Chemical Engineering, Xi’an Polytechnic University, Xi’an, China
| | - Zhigang Qiu
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| |
Collapse
|
3
|
Zhao K, Liu S, Feng Y, Li F. Bioelectrochemical remediation of soil antibiotic and antibiotic resistance gene pollution: Key factors and solution strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174517. [PMID: 38977104 DOI: 10.1016/j.scitotenv.2024.174517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/12/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024]
Abstract
In recent years, owing to the overuse and improper handling of antibiotics, soil antibiotic pollution has become increasingly serious and an environmental issue of global concern. It affects the quality and ecological balance of the soil and allows the spread of antibiotic resistance genes (ARGs), which threatens the health of all people. As a promising soil remediation technology, bioelectrochemical systems (BES) are superior to traditional technologies because of their simple operation, self-sustaining operation, easy control characteristics, and use of the metabolic processes of microorganisms and electrochemical redox reactions. Moreover, they effectively remediate antibiotic contaminants in soil. This review explores the application of BES remediation mechanisms in the treatment of antibiotic contamination in soil in detail. The advantages of BES restoration are highlighted, including the effective removal of antibiotics from the soil and the prevention of the spread of ARGs. Additionally, the critical roles played by microbial communities in the remediation process and the primary parameters influencing the remediation effect of BES were clarified. This study explores several strategies to improve the BES repair efficiency, such as adjusting the reactor structure, improving the electrode materials, applying additives, and using coupling systems. Finally, this review discusses the current limitations and future development prospects, and how to improve its performance and promote its practical applications. In summary, this study aimed to provide a reference for better strategies for BES to effectively remediate soil antibiotic contamination.
Collapse
Affiliation(s)
- Ke Zhao
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun 130118, People's Republic of China
| | - Shenghe Liu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun 130118, People's Republic of China; Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yimeng Feng
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fengxiang Li
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
4
|
Mundra S, Kabra A. Unveiling the Druggable Landscape of Bacterial Peptidyl tRNA Hydrolase: Insights into Structure, Function, and Therapeutic Potential. Biomolecules 2024; 14:668. [PMID: 38927071 PMCID: PMC11202043 DOI: 10.3390/biom14060668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Bacterial peptidyl tRNA hydrolase (Pth) or Pth1 emerges as a pivotal enzyme involved in the maintenance of cellular homeostasis by catalyzing the release of peptidyl moieties from peptidyl-tRNA molecules and the maintenance of a free pool of specific tRNAs. This enzyme is vital for bacterial cells and an emerging drug target for various bacterial infections. Understanding the enzymatic mechanisms and structural intricacies of bacterial Pth is pivotal in designing novel therapeutics to combat antibiotic resistance. This review provides a comprehensive analysis of the multifaceted roles of Pth in bacterial physiology, shedding light on its significance as a potential drug target. This article delves into the diverse functions of Pth, encompassing its involvement in ribosome rescue, the maintenance of a free tRNA pool in bacterial systems, the regulation of translation fidelity, and stress response pathways within bacterial systems. Moreover, it also explores the druggability of bacterial Pth, emphasizing its promise as a target for antibacterial agents and highlighting the challenges associated with developing specific inhibitors against this enzyme. Structural elucidation represents a cornerstone in unraveling the catalytic mechanisms and substrate recognition of Pth. This review encapsulates the current structural insights of Pth garnered through various biophysical techniques, such as X-ray crystallography and NMR spectroscopy, providing a detailed understanding of the enzyme's architecture and conformational dynamics. Additionally, biophysical aspects, including its interaction with ligands, inhibitors, and substrates, are discussed, elucidating the molecular basis of bacterial Pth's function and its potential use in drug design strategies. Through this review article, we aim to put together all the available information on bacterial Pth and emphasize its potential in advancing innovative therapeutic interventions and combating bacterial infections.
Collapse
Affiliation(s)
- Surbhi Mundra
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Ashish Kabra
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
5
|
Liu F, Luo Y, Xu T, Lin H, Qiu Y, Li B. Current examining methods and mathematical models of horizontal transfer of antibiotic resistance genes in the environment. Front Microbiol 2024; 15:1371388. [PMID: 38638913 PMCID: PMC11025395 DOI: 10.3389/fmicb.2024.1371388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/11/2024] [Indexed: 04/20/2024] Open
Abstract
The increasing prevalence of antibiotic resistance genes (ARGs) in the environment has garnered significant attention due to their health risk to human beings. Horizontal gene transfer (HGT) is considered as an important way for ARG dissemination. There are four general routes of HGT, including conjugation, transformation, transduction and vesiduction. Selection of appropriate examining methods is crucial for comprehensively understanding characteristics and mechanisms of different HGT ways. Moreover, combined with the results obtained from different experimental methods, mathematical models could be established and serve as a powerful tool for predicting ARG transfer dynamics and frequencies. However, current reviews of HGT for ARG spread mainly focus on its influencing factors and mechanisms, overlooking the important roles of examining methods and models. This review, therefore, delineated four pathways of HGT, summarized the strengths and limitations of current examining methods, and provided a comprehensive summing-up of mathematical models pertaining to three main HGT ways of conjugation, transformation and transduction. Finally, deficiencies in current studies were discussed, and proposed the future perspectives to better understand and assess the risks of ARG dissemination through HGT.
Collapse
Affiliation(s)
- Fan Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yuqiu Luo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Tiansi Xu
- School of Environment, Tsinghua University, Beijing, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yong Qiu
- School of Environment, Tsinghua University, Beijing, China
| | - Bing Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
6
|
Aziz IM, Alshalan RM, Rizwana H, Alkhelaiwi F, Almuqrin AM, Aljowaie RM, Alkubaisi NA. Chemical Composition, Antioxidant, Anticancer, and Antibacterial Activities of Roots and Seeds of Ammi visnaga L. Methanol Extract. Pharmaceuticals (Basel) 2024; 17:121. [PMID: 38256954 PMCID: PMC10819509 DOI: 10.3390/ph17010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
For centuries, plants and their components have been harnessed for therapeutic purposes, with Ammi visnaga L. (Khella) being no exception to this rich tradition. While existing studies have shed light on the cytotoxic and antimicrobial properties of seed extracts, there remains a noticeable gap in research about the antimicrobial, antioxidant, and anticancer potential of root extracts. This study seeks to address this gap by systematically examining methanol extracts derived from the roots of A. visnaga L. and comparing their effects with those of seed extracts specifically against breast cancer cells. Notably, absent from previous investigations, this study focuses on the comparative analysis of the antimicrobial, antioxidant, and anticancer activities of both root and seed extracts. The methanol extract obtained from A. visnaga L. seeds demonstrated a notably higher level of total phenolic content (TPC) than its root counterpart, measuring 366.57 ± 2.86 and 270.78 ± 2.86 mg GAE/g dry weight of the dry extract, respectively. In the evaluation of antioxidant activities using the DPPH method, the IC50 values for root and seed extracts were determined to be 193.46 ± 17.13 μg/mL and 227.19 ± 1.48 μg/mL, respectively. Turning our attention to cytotoxicity against breast cancer cells (MCF-7 and MDA-MB-231), both root and seed extracts displayed similar cytotoxic activities, with IC50 values of 92.45 ± 2.14 μg/mL and 75.43 ± 2.32 μg/mL, respectively. Furthermore, both root and seed extracts exhibited a noteworthy modulation of gene expression, upregulating the expression of caspase and Bax mRNA levels while concurrently suppressing the expression of anti-apoptotic genes (Bcl-xL and Bcl-2), thereby reinforcing their potential as anticancer agents. A. visnaga L. seed extract outperforms the root extract in antimicrobial activities, exhibiting lower minimum inhibitory concentrations (MICs) of 3.81 ± 0.24 to 125 ± 7.63 μg/mL. This highlights the seeds' potential as potent antibacterial agents, expanding their role in disease prevention. Overall, this study underscores the diverse therapeutic potentials of A. visnaga L. roots and seeds, contributing to the understanding of plant-derived extracts in mitigating disease risks.
Collapse
Affiliation(s)
- Ibrahim M. Aziz
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (R.M.A.); (H.R.); (F.A.); (R.M.A.); (N.A.A.)
| | - Rawan M. Alshalan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (R.M.A.); (H.R.); (F.A.); (R.M.A.); (N.A.A.)
| | - Humaira Rizwana
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (R.M.A.); (H.R.); (F.A.); (R.M.A.); (N.A.A.)
| | - Fetoon Alkhelaiwi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (R.M.A.); (H.R.); (F.A.); (R.M.A.); (N.A.A.)
| | - Abdulaziz M. Almuqrin
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia;
| | - Reem M. Aljowaie
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (R.M.A.); (H.R.); (F.A.); (R.M.A.); (N.A.A.)
| | - Noorah A. Alkubaisi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (R.M.A.); (H.R.); (F.A.); (R.M.A.); (N.A.A.)
| |
Collapse
|
7
|
Karwańska M, Wieliczko A, Bojesen AM, Villumsen KR, Krzyżewska-Dudek E, Woźniak-Biel A. Isolation and characterization of multidrug resistant Gallibacterium anatis biovar haemolytica strains from Polish geese and hens. Vet Res 2023; 54:67. [PMID: 37612766 PMCID: PMC10463661 DOI: 10.1186/s13567-023-01198-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/05/2023] [Indexed: 08/25/2023] Open
Abstract
Gallibacterium anatis biovar haemolytica is a bacterium that is frequently associated with infections of the reproductive tract and respiratory system in poultry. To assess the current prevalence and resistance profile of these bacteria in Poland, we collected and investigated 63 strains of Gallibacterium from diseased domestic poultry flocks including geese, laying hens, breeding hens and an ornamental hen. Detailed characterization of the isolates included the analysis of phenotypic antimicrobial resistance profiles and biofilm formation ability. Furthermore, the genetic background of 40 selected isolates regarding the presence of virulence and antimicrobial resistance genes and mobile genetic elements was determined. All investigated isolates were multidrug resistant, most prominently to β-lactams, fluoroquinolones, sulfonamides and macrolides. A total of 48 different resistance profiles were detected. Of all isolates, 50.8% formed a strong biofilm, where strains isolated from geese appeared to be better at biofilm formation than strains isolated from laying and breeding hens. Single-nucleotide polymorphism genotyping revealed that G. anatis bv. haemolytica strains are restricted in host and geographical distribution, and the geese isolates showed greater phylogenetic similarity. Whole genome sequencing enabled identification of 25 different antimicrobial resistance determinants. The most common resistance genes were tetB, blaROB-1, and blaTEM-1 which may be located on mobile genetic elements. All isolates possessed the toxin gene gtxA, and the fimbrial gene flfA was identified in 95% of strains. Our results indicated that all G. anatis bv. haemolytica isolates showed multidrug resistant phenotypes. Strains isolated from geese were characterized by the highest percentage of isolates resistant to selected antimicrobials, probably reflecting host-related adaptations.
Collapse
Affiliation(s)
- Magdalena Karwańska
- Department of Epizootiology and Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland.
| | - Alina Wieliczko
- Department of Epizootiology and Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Anders Miki Bojesen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Rømer Villumsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Eva Krzyżewska-Dudek
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Anna Woźniak-Biel
- Department of Epizootiology and Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland.
| |
Collapse
|
8
|
Yang X, Niu Y, Yang Y, Zhou H, Li J, Fu X, Shen Z, Wang J, Qiu Z. Pheromone effect of estradiol regulates the conjugative transfer of pCF10 carrying antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131087. [PMID: 36889077 DOI: 10.1016/j.jhazmat.2023.131087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Horizontal gene transfer (HGT) mediated by conjugative plasmids greatly contributes to bacteria evolution and the transmission of antibiotic resistance genes (ARGs). In addition to the selective pressure imposed by extensive antibiotic use, environmental chemical pollutants facilitate the dissemination of antibiotic resistance, consequently posing a serious threat to the ecological environment. Presently, the majority of studies focus on the effects of environmental compounds on R plasmid-mediated conjugation transfer, and pheromone-inducible conjugation has largely been neglected. In this study, we explored the pheromone effect and potential molecular mechanisms of estradiol in promoting the conjugative transfer of pCF10 plasmid in Enterococcus faecalis. Environmentally relevant concentrations of estradiol significantly increased the conjugative transfer of pCF10 with a maximum frequency of 3.2 × 10-2, up to 3.5-fold change compared to that of control. Exposure to estradiol induced the activation of pheromone signaling cascade by increasing the expression of ccfA. Furthermore, estradiol might directly bind to the pheromone receptor PrgZ and promote pCF10 induction and finally enhance the conjugative transfer of pCF10. These findings cast valuable insights on the roles of estradiol and its homolog in increasing antibiotic resistance and the potential ecological risk.
Collapse
Affiliation(s)
- Xiaobo Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yuanyuan Niu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Shanghai Ocean University, Shanghai 201306, China
| | - Yutong Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Hongrui Zhou
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Jing Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xinyue Fu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Shanghai Ocean University, Shanghai 201306, China
| | - Zhiqiang Shen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Jingfeng Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Zhigang Qiu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| |
Collapse
|
9
|
Jamieson-Lane A, Friedrich A, Blasius B. Comparing optimization criteria in antibiotic allocation protocols. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220181. [PMID: 35345436 PMCID: PMC8941386 DOI: 10.1098/rsos.220181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/02/2022] [Indexed: 05/03/2023]
Abstract
Clinicians prescribing antibiotics in a hospital context follow one of several possible 'treatment protocols'-heuristic rules designed to balance the immediate needs of patients against the long-term threat posed by the evolution of antibiotic resistance and multi-resistant bacteria. Several criteria have been proposed for assessing these protocols; unfortunately, these criteria frequently conflict with one another, each providing a different recommendation as to which treatment protocol is best. Here, we review and compare these optimization criteria. We are able to demonstrate that criteria focused primarily on slowing evolution of resistance are directly antagonistic to patient health both in the short and long term. We provide a new optimization criteria of our own, intended to more meaningfully balance the needs of the future and present. Asymptotic methods allow us to evaluate this criteria and provide insights not readily available through the numerical methods used previously in the literature. When cycling antibiotics, we find an antibiotic switching time which proves close to optimal across a wide range of modelling assumptions.
Collapse
Affiliation(s)
- Alastair Jamieson-Lane
- University of Auckland, Mathematics, Auckland 1142, New Zealand
- Carl von Ossietzky, Universität Oldenburg, Oldenburg, Germany
| | | | - Bernd Blasius
- Carl von Ossietzky, Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|