2
|
Wang YY, Ding XL, Israel Gurti J, Chen Y, Li W, Wang X, Wang WJ, Deng JJ. Non-Dissociative Activation of Chemisorbed Dinitrogen on One or Two Vanadium Atoms Supported by a Mo 6 S 8 Cluster. Chemphyschem 2021; 22:1645-1654. [PMID: 34050588 DOI: 10.1002/cphc.202100195] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/24/2021] [Indexed: 01/19/2023]
Abstract
Adsorption of N2 on Mo6 S8 q _Vx clusters (x=0, 1, 2; q=0, ±1) were systematically studied by density functional theory calculations with dispersion corrections. It was found that the N2 can be chemisorbed and undergo non-dissociative activation on single or double metal atoms. The adsorption and activation are influenced by metal types (V or Mo), N2 coordination modes and charge states of the clusters. Particularly, anionic Mo6 S8 - _V2 clusters have remarkable ability to fix and activate N2 . In Mo6 S8 - _V2 , two V atoms prefer to adsorb on two adjacent S-Mo-S hollow sites, leading to the formation of a supported V…V unit. The N2 is bridged side-on coordinated with these two V atoms with high adsorption energy and significant charge transfer. The bond order, bond length and vibration frequency of the adsorbed N2 are close to those of a N-N single bond.
Collapse
Affiliation(s)
- Ya-Ya Wang
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing, 102206, P. R. China.,Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing, 102206, P. R. China.,School of New Energy, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing, 102206, P. R. China
| | - Xun-Lei Ding
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing, 102206, P. R. China.,Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing, 102206, P. R. China
| | - Joseph Israel Gurti
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing, 102206, P. R. China.,Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing, 102206, P. R. China
| | - Yan Chen
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing, 102206, P. R. China.,Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing, 102206, P. R. China.,School of New Energy, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing, 102206, P. R. China
| | - Wei Li
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing, 102206, P. R. China.,Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing, 102206, P. R. China
| | - Xin Wang
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing, 102206, P. R. China.,Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing, 102206, P. R. China
| | - Wen-Jie Wang
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing, 102206, P. R. China.,Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing, 102206, P. R. China
| | - Jia-Jun Deng
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing, 102206, P. R. China.,Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing, 102206, P. R. China
| |
Collapse
|
4
|
Chen X, Chen Y, Song C, Ji P, Wang N, Wang W, Cui L. Recent Advances in Supported Metal Catalysts and Oxide Catalysts for the Reverse Water-Gas Shift Reaction. Front Chem 2020; 8:709. [PMID: 33110907 PMCID: PMC7489098 DOI: 10.3389/fchem.2020.00709] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/09/2020] [Indexed: 11/13/2022] Open
Abstract
The reverse water-gas shift reaction (RWGSR), a crucial stage in the conversion of abundant CO2 into chemicals or hydrocarbon fuels, has attracted extensive attention as a renewable system to synthesize fuels by non-traditional routes. There have been persistent efforts to synthesize catalysts for industrial applications, with attention given to the catalytic activity, CO selectivity, and thermal stability. In this review, we describe the thermodynamics, kinetics, and atomic-level mechanisms of the RWGSR in relation to efficient RWGSR catalysts consisting of supported catalysts and oxide catalysts. In addition, we rationally classify, summarize, and analyze the effects of physicochemical properties, such as the morphologies, compositions, promoting abilities, and presence of strong metal-support interactions (SMSI), on the catalytic performance and CO selectivity in the RWGSR over supported catalysts. Regarding oxide catalysts (i.e., pure oxides, spinel, solid solution, and perovskite-type oxides), we emphasize the relationships among their surface structure, oxygen storage capacity (OSC), and catalytic performance in the RWGSR. Furthermore, the abilities of perovskite-type oxides to enhance the RWGSR with chemical looping cycles (RWGSR-CL) are systematically illustrated. These systematic introductions shed light on development of catalysts with high performance in RWGSR.
Collapse
Affiliation(s)
- Xiaodong Chen
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, China
- Center for Clean Energy Technology, Faculty of Science, School of Mathematical and Physical Science, University of Technology Sydney, Sydney, NSW, Australia
- Department of Applied Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, China
| | - Ya Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chunyu Song
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, China
- Center for Clean Energy Technology, Faculty of Science, School of Mathematical and Physical Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Peiyi Ji
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, China
| | - Nannan Wang
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, China
| | - Wenlong Wang
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, China
| | - Lifeng Cui
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, China
| |
Collapse
|
5
|
Sharma L, Upadhyay R, Rangarajan S, Baltrusaitis J. Inhibitor, Co-Catalyst, or Co-Reactant? Probing the Different Roles of H 2S during CO 2 Hydrogenation on the MoS 2 Catalyst. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02986] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lohit Sharma
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| | - Ronak Upadhyay
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| | - Srinivas Rangarajan
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| | - Jonas Baltrusaitis
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
6
|
Zhang HT, Liu C, Liu P, Hu YH. Mo6S8-based single-metal-atom catalysts for direct methane to methanol conversion. J Chem Phys 2019; 151:024304. [PMID: 31301699 DOI: 10.1063/1.5110875] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Hao-Tian Zhang
- Department of Materials Science and Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931-1295, USA
| | - Cheng Liu
- Mechanical Engineering College, Yangzhou University, 196 Huayang West Road, Yangzhou, Jiangsu 225127, People’s Republic of China
| | - Ping Liu
- Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Yun Hang Hu
- Department of Materials Science and Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931-1295, USA
| |
Collapse
|
7
|
Zhang X, Tian X, Shen C, Xia C, He L. Acid‐Promoted Hydroformylative Synthesis of Alcohol with Carbon Dioxide by Heterobimetallic Ruthenium‐Cobalt Catalytic System. ChemCatChem 2019. [DOI: 10.1002/cctc.201802091] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xuehua Zhang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP)Chinese Academy of Sciences Lanzhou 730000 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Yancheng Teachers University Yancheng 224007 P. R. China
| | - Xinxin Tian
- Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi ProvinceShanxi University Taiyuan 030006 P. R. China
| | - Chaoren Shen
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP)Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Chungu Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP)Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Lin He
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP)Chinese Academy of Sciences Lanzhou 730000 P. R. China
| |
Collapse
|