1
|
Larina V, Babich O, Zhikhreva A, Ivanova S, Chupakhin E. The use of metal-organic frameworks as heterogeneous catalysts. REV INORG CHEM 2022. [DOI: 10.1515/revic-2022-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
This article presents an overview of some of the available research studies of MOFs as catalysts. Catalytic studies of magnetic iron oxide nanoparticles with modified surfaces, MOFs with precious metals such as palladium, platinum, and silver, with zirconium, hafnium, copper, alkaline earth metals, lanthanides are generalized. The studies of the catalytic activity of micro- and mesoporous MOF structures are described.
Collapse
Affiliation(s)
- Viktoria Larina
- Institute of Living Systems , Immanuel Kant Baltic Federal University , A. Nevskogo Street 14 , Kaliningrad , 236016 , Russia
| | - Olga Babich
- Institute of Living Systems , Immanuel Kant Baltic Federal University , A. Nevskogo Street 14 , Kaliningrad , 236016 , Russia
| | - Anastasia Zhikhreva
- Institute of Living Systems , Immanuel Kant Baltic Federal University , A. Nevskogo Street 14 , Kaliningrad , 236016 , Russia
| | - Svetlana Ivanova
- Natural Nutraceutical Biotesting Laboratory , Kemerovo State University , Krasnaya Street 6 , Kemerovo , 650043 , Russia
- Department of General Mathematics and Informatics , Kemerovo State University , Krasnaya Street, 6 , Kemerovo 650043 , Russia
| | - Eugene Chupakhin
- Institute of Living Systems , Immanuel Kant Baltic Federal University , A. Nevskogo Street 14 , Kaliningrad , 236016 , Russia
| |
Collapse
|
2
|
Hu WJ, Zhou XT, Sun MZ, Ji HB. Efficient catalytic oxidation of primary benzylic C H bonds with molecular oxygen catalyzed by cobalt porphyrins and N-hydroxyphthalimide (NHPI) in supercritical carbon dioxide. CATAL COMMUN 2021. [DOI: 10.1016/j.catcom.2021.106353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
3
|
Kanarat J, Bunchuay T, Klysubun W, Tantirungrotechai J. Cu
2
O‐CuO/Chitosan Composites as Heterogeneous Catalysts for Benzylic C−H Oxidation at Room Temperature. ChemCatChem 2021. [DOI: 10.1002/cctc.202101187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jurin Kanarat
- Department of Chemistry Faculty of Science Mahidol University Rama 6 Road Bangkok 10400 Thailand
| | - Thanthapatra Bunchuay
- Department of Chemistry Faculty of Science Mahidol University Rama 6 Road Bangkok 10400 Thailand
- Center of Excellence for Innovation in Chemistry Faculty of Science Mahidol University Rama 6 Road Bangkok 10400 Thailand
| | - Wantana Klysubun
- Synchrotron Light Research Institute (SLRI) 111 University Avenue, Muang District Nakhon Ratchasima 30000 Thailand
| | - Jonggol Tantirungrotechai
- Department of Chemistry Faculty of Science Mahidol University Rama 6 Road Bangkok 10400 Thailand
- Center of Excellence for Innovation in Chemistry Faculty of Science Mahidol University Rama 6 Road Bangkok 10400 Thailand
| |
Collapse
|
4
|
Meenu PC, Datta SP, Singh SA, Dinda S, Chakraborty C, Roy S. A compendium on metal organic framework materials and their derivatives as electrocatalyst for methanol oxidation reaction. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Wang Y, Li P, Wang J, Liu Z, Wang Y, Lu Y, Liu Y, Duan L, Li W, Sarina S, Zhu H, Liu J. Visible-light photocatalytic selective oxidation of C(sp 3)–H bonds by anion–cation dual-metal-site nanoscale localized carbon nitride. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00328c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Anion–cation dual-metal-site nanoscale localized carbon nitride exhibits a significantly enhanced photocatalytic activity for the oxidation of alkanes and alcohols with a high activity and a wide functional group tolerance.
Collapse
|
6
|
Xiao Y, Song B, Chen Y, Cheng L, Ren Q. ZIF-67 with precursor concentration-dependence morphology for aerobic oxidation of toluene. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Seo SD, Yu S, Park S, Kim DW. In Situ Conversion of Metal-Organic Frameworks into VO 2 -V 3 S 4 Heterocatalyst Embedded Layered Porous Carbon as an "All-in-One" Host for Lithium-Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004806. [PMID: 33136344 DOI: 10.1002/smll.202004806] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Although lithium-sulfur batteries exhibit a fivefold higher energy density than commercial lithium-ion batteries, their volume expansion and insulating nature, and intrinsic polysulfide shuttle have hindered their practical application. An alternative sulfur host is necessary to realize porous, conductive, and polar functions; however, there is a tradeoff among these three critical factors in material design. Here, the authors report a layered porous carbon (LPC) with VO2 /V3 S4 heterostructures using one-step carbonization-sulfidation of metal-organic framework templates as a sulfur host that meets all the criteria. In situ conversion of V-O ions into V3 S4 nuclei in the confined 2D space generated by dynamic formation of the LPC matrix creates {200}-facet-exposed V3 S4 nanosheets decorated with tiny VO2 nanoparticles. The VO2 /V3 S4 @ LPC composite facilitates high sulfur loading (70 wt%), superior energy density (1022 mA h g-1 at 0.2 C, 100 cycles), and long-term cyclability (665 mA h g-1 at 1 C, 1000 cycles). The enhanced Li-S chemistry is attributed to the synergistic heterocatalytic behavior of polar VO2 and conductive V3 S4 in the soft porous LPC scaffold, which accelerates polysulfide adsorption, conversion, and charge-transfer ability simultaneously.
Collapse
Affiliation(s)
- Seung-Deok Seo
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, 02841, South Korea
| | - Seungho Yu
- Center for Energy Storage Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - Sangbaek Park
- Center for Energy Materials Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - Dong-Wan Kim
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, 02841, South Korea
| |
Collapse
|
8
|
Lubov DP, Talsi EP, Bryliakov KP. Methods for selective benzylic C–H oxofunctionalization of organic compounds. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4918] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Ajjou AN, Rahman A. Green Organic Solvent-Free Oxidation of Alkylarenes with tert-Butyl Hydroperoxide Catalyzed by Water-Soluble Copper Complex. OPEN CHEM 2020. [DOI: 10.1515/chem-2020-0018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractDifferent benzylic compounds were efficiently oxidized to the corresponding ketones with aqueous 70% tert-butyl hydroperoxide (TBHP) and the catalytic system composed of CuCl2.2H2O and 2,2’-biquinoline-4,4’-dicarboxylic acid dipotassium salt (BQC). The catalytic system CuCl2/BQC/TBHP allows obtaining high yields at room temperature under organic solvent-free conditions. The interest of this system lies in its cost effectiveness and its benign nature towards the environment. Benzylic tertbutylperoxy ethers and benzylic alcohols were observed and suggested as the reaction intermediates. Analysis of organic products by atomic absorption did not show any contamination with copper metal. In terms of efficiency, CuCl2/BQC system is comparable or superior to the most of the catalytic systems described in the literature and which are based on toxic organic solvent.
Collapse
Affiliation(s)
- Abdelaziz Nait Ajjou
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New-Brunswick, Canada E1A 3E9Canada
| | - Ateeq Rahman
- University of Namibia, Pionierspark, Post Box-13301Windhoek, Namibia
| |
Collapse
|
10
|
Li P, Wang Y, Wang X, Wang Y, Liu Y, Huang K, Hu J, Duan L, Hu C, Liu J. Selective Oxidation of Benzylic C-H Bonds Catalyzed by Cu(II)/{PMo 12}. J Org Chem 2020; 85:3101-3109. [PMID: 31944763 DOI: 10.1021/acs.joc.9b02997] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Precise catalytic regulation of carbon radical generation by a highly active oxygen radical to abstract the H atom in a C-H bond is an effective method for the selective activation of C-H synthetic chemistry. Herein, we report a facile catalyst system with commercially available copper(II)/{PMo12} to form a tert-butanol radical intermediate for the selective oxidation of benzylic C-H bonds. The reaction shows a broad range of substrates (benzyl methylene, benzyl alcohols) with good functional group tolerance and chemical selectivity. The corresponding carbonyl compounds were synthesized with good yields under mild conditions. DFT calculations and experimental analysis further demonstrated a reasonable carbon radical mechanism for this type of organic transformation reaction.
Collapse
Affiliation(s)
- Peihe Li
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia University for Nationalities, Tongliao 028000, China
| | - Yingying Wang
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia University for Nationalities, Tongliao 028000, China
| | - Xia Wang
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia University for Nationalities, Tongliao 028000, China
| | - Yin Wang
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia University for Nationalities, Tongliao 028000, China
| | - Ying Liu
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia University for Nationalities, Tongliao 028000, China
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Jing Hu
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia University for Nationalities, Tongliao 028000, China
| | - Limei Duan
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia University for Nationalities, Tongliao 028000, China
| | - Changwen Hu
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jinghai Liu
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia University for Nationalities, Tongliao 028000, China
| |
Collapse
|
11
|
Li ZX, Wei XY, Liu GH, Meng XL, Yang Z, Niu S, Zhang D, Gao HS, Ma ZH, Zong ZM. Highly selective hydrogenation of furfural and levulinic acid over Ni0.09Zn/NC600 derived from ZIFW-8. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2019.110651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Selective hydrogenation of nitroarenes over MOF-derived Co@CN catalysts at mild conditions. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.04.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Yang Y, Li G, Mao X, She Y. Selective Aerobic Oxidation of 4-Ethylnitrobenzene to 4-Nitroacetophenone Promoted by Metalloporphyrins. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuning Yang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Guijie Li
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xinbiao Mao
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yuanbin She
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
14
|
Guo C, Zhang Y, Zhang L, Zhang Y, Wang J. 2-Methylimidazole-assisted synthesis of a two-dimensional MOF-5 catalyst with enhanced catalytic activity for the Knoevenagel condensation reaction. CrystEngComm 2018. [DOI: 10.1039/c8ce00954f] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel and facile strategy was developed for the synthesis of a 2D MOF-5 catalyst with 2-methyimidazole as regulation reagent and a Lewis basic site, which showed excellent catalytic activity in Knoevenagel condensation.
Collapse
Affiliation(s)
- Changyan Guo
- Key Laboratory of Oil and Gas Fine Chemicals
- Ministry of Education & Xinjiang Uygur Autonomous Region
- College of Chemistry and Chemical Engineering of Xinjiang University
- Urumqi 830046
- P. R. China
| | - Yonghong Zhang
- Key Laboratory of Oil and Gas Fine Chemicals
- Ministry of Education & Xinjiang Uygur Autonomous Region
- College of Chemistry and Chemical Engineering of Xinjiang University
- Urumqi 830046
- P. R. China
| | - Li Zhang
- Key Laboratory of Oil and Gas Fine Chemicals
- Ministry of Education & Xinjiang Uygur Autonomous Region
- College of Chemistry and Chemical Engineering of Xinjiang University
- Urumqi 830046
- P. R. China
| | - Yi Zhang
- Key Laboratory of Resources Chemistry of Nonferrous Metals (Ministry of Education)
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China
| | - Jide Wang
- Key Laboratory of Oil and Gas Fine Chemicals
- Ministry of Education & Xinjiang Uygur Autonomous Region
- College of Chemistry and Chemical Engineering of Xinjiang University
- Urumqi 830046
- P. R. China
| |
Collapse
|
15
|
Guo C, Zhang Y, Zhang Y, Wang J. An efficient approach for enhancing the catalytic activity of Ni-MOF-74 via a relay catalyst system for the selective oxidation of benzylic C–H bonds under mild conditions. Chem Commun (Camb) 2018; 54:3701-3704. [DOI: 10.1039/c7cc09602j] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile and efficient approach for enhancing the catalytic activity of Ni-MOF-74 via a relay catalysis strategy with [bmim]Br was developed, which is excellent for the selective oxidation of benzylic C–H bond under mild conditions.
Collapse
Affiliation(s)
- Changyan Guo
- Key Laboratory of Oil and Gas Fine Chemicals
- Ministry of Education & Xinjiang Uygur Autonomous Region
- College of Chemistry and Chemical Engineering
- Xinjiang University
- Urumqi 830046
| | - Yonghong Zhang
- Key Laboratory of Oil and Gas Fine Chemicals
- Ministry of Education & Xinjiang Uygur Autonomous Region
- College of Chemistry and Chemical Engineering
- Xinjiang University
- Urumqi 830046
| | - Yi Zhang
- Key Laboratory of Resources Chemistry of Nonferrous Metals (Ministry of Education)
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China
| | - Jide Wang
- Key Laboratory of Oil and Gas Fine Chemicals
- Ministry of Education & Xinjiang Uygur Autonomous Region
- College of Chemistry and Chemical Engineering
- Xinjiang University
- Urumqi 830046
| |
Collapse
|