1
|
Li Z, Deng J, Ma P, Bai H, Jin Y, Zhang Y, Dong A, Burenjargal M. Stimuli-Responsive Molecularly Imprinted Polymers: Mechanism and Applications. J Sep Sci 2024; 47:e202400441. [PMID: 39385447 DOI: 10.1002/jssc.202400441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 10/12/2024]
Abstract
Molecularly imprinted polymers (MIPs) are very suitable for extraction, drug delivery systems, and sensors due to their good selective adsorption ability, but the difficulty of eluting templates during synthesis and the limitation of application scenarios put higher demands on MIPs. Stimuli-responsive MIPs (SR-MIPs) can actively respond to changes in external conditions to realize various functions, which provides new ideas for the further development of MIPs. This paper reviews the multiple response modes of MIPs, including the common temperature, pH, photo, magnetic, redox-responsive and rare gas, biomolecule, ion, and solvent-responsive MIPs, and explains the mechanism, composition, and applications of such SR-MIPs. These SR-MIPs and the resulting dual/multiple-responsive MIPs have good selectivity, and controllability, and are very promising for isolation and extraction, targeted drug delivery, and electro-sensor.
Collapse
Affiliation(s)
- Zheng Li
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Jiaming Deng
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Peirong Ma
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Haoran Bai
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Yuting Jin
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Yanling Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | | |
Collapse
|
2
|
Sudagar A, Shao S, Żołek T, Maciejewska D, Asztemborska M, Cieplak M, Sharma PS, D’Souza F, Kutner W, Noworyta KR. Improving the Selectivity of the C-C Coupled Product Electrosynthesis by Using Molecularly Imprinted Polymer─An Enhanced Route from Phenol to Biphenol. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49595-49610. [PMID: 37823554 PMCID: PMC10614056 DOI: 10.1021/acsami.3c09696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023]
Abstract
We developed a procedure for selective 2,4-dimethylphenol, DMPh, direct electro-oxidation to 3,3',5,5'-tetramethyl-2,2'-biphenol, TMBh, a C-C coupled product. For that, we used an electrode coated with a product-selective molecularly imprinted polymer (MIP). The procedure is reasonably selective toward TMBh without requiring harmful additives or elevated temperatures. The TMBh product itself was used as a template for imprinting. We followed the template interaction with various functional monomers (FMs) using density functional theory (DFT) simulations to select optimal FM. On this basis, we used a prepolymerization complex of TMBh with carboxyl-containing FM at a 1:2 TMBh-to-FM molar ratio for MIP fabrication. The template-FM interaction was also followed by using different spectroscopic techniques. Then, we prepared the MIP on the electrode surface in the form of a thin film by the potentiodynamic electropolymerization of the chosen complex and extracted the template. Afterward, we characterized the fabricated films by using electrochemistry, FTIR spectroscopy, and AFM, elucidating their composition and morphology. Ultimately, the DMPh electro-oxidation was performed on the MIP film-coated electrode to obtain the desired TMBh product. The electrosynthesis selectivity was much higher at the electrode coated with MIP film in comparison with the reference nonimprinted polymer (NIP) film-coated or bare electrodes, reaching 39% under optimized conditions. MIP film thickness and electrosynthesis parameters significantly affected the electrosynthesis yield and selectivity. At thicker films, the yield was higher at the expense of selectivity, while the electrosynthesis potential increase enhanced the TMBh product yield. Computer simulations of the imprinted cavity interaction with the substrate molecule demonstrated that the MIP cavity promoted direct coupling of the substrate to form the desired TMBh product.
Collapse
Affiliation(s)
- Alcina
Johnson Sudagar
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Shuai Shao
- Department
of Chemistry, University of North Texas, 1155, Union Circle, #305070, Denton, Texas 76203-5017, United States
| | - Teresa Żołek
- Department
of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Dorota Maciejewska
- Department
of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Monika Asztemborska
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Maciej Cieplak
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Piyush Sindhu Sharma
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Francis D’Souza
- Department
of Chemistry, University of North Texas, 1155, Union Circle, #305070, Denton, Texas 76203-5017, United States
| | - Włodzimierz Kutner
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Faculty
of Mathematics and Natural Sciences, School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-815 Warsaw, Poland
| | - Krzysztof R. Noworyta
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
3
|
Liu R, Zhang X, Xia F, Dai Y. Azobenzene-based photoswitchable catalysts: State of the art and perspectives. J Catal 2022. [DOI: 10.1016/j.jcat.2022.03.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Si Y, Jiang F, Qiang L, Teng X, Gong C, Tang Q. A visible-light-responsive molecularly imprinted polyurethane for specific detection of dibenzothiophene in gasoline. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1254-1260. [PMID: 35266457 DOI: 10.1039/d1ay02128a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dibenzothiophene and its derivatives in gasoline and diesel would release sulfur oxides during combustion, and this is harmful to human health and the environment. This paper reports a method based on a visible-light-responsive molecularly imprinted polyurethane (VMIPU) to monitor trace dibenzothiophene in gasoline. The VMIPU was prepared by a polyaddition reaction using N,N-bis-(2-hydroxyethyl)-4-phenylazoaniline as the functional monomer, dibenzothiophene as the template molecule, diphenylmethane diisocyanate as the crosslinker and castor oil as the chain extender. The VMIPU showed good visible-light-response and specific adsorption for dibenzothiophene. The trans → cis photoisomerization rate constant of azobenzene chromophores in the VMIPU shows a linear relationship with the dibenzothiophene concentration in the range of 0-20 μmol L-1. This was used to estimate trace dibenzothiophene in spiked gasoline with recoveries of 95.7-101.0% and relative standard deviations of 7.0-12.7%.
Collapse
Affiliation(s)
- Yamin Si
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China.
| | - Feng Jiang
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China.
| | - Liang Qiang
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China.
| | - Xiaotong Teng
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China.
| | - Chengbin Gong
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China.
| | - Qian Tang
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China.
| |
Collapse
|
5
|
Zaera F. Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive With Those of Homogeneous Catalysts? Chem Rev 2022; 122:8594-8757. [PMID: 35240777 DOI: 10.1021/acs.chemrev.1c00905] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A critical review of different prominent nanotechnologies adapted to catalysis is provided, with focus on how they contribute to the improvement of selectivity in heterogeneous catalysis. Ways to modify catalytic sites range from the use of the reversible or irreversible adsorption of molecular modifiers to the immobilization or tethering of homogeneous catalysts and the development of well-defined catalytic sites on solid surfaces. The latter covers methods for the dispersion of single-atom sites within solid supports as well as the use of complex nanostructures, and it includes the post-modification of materials via processes such as silylation and atomic layer deposition. All these methodologies exhibit both advantages and limitations, but all offer new avenues for the design of catalysts for specific applications. Because of the high cost of most nanotechnologies and the fact that the resulting materials may exhibit limited thermal or chemical stability, they may be best aimed at improving the selective synthesis of high value-added chemicals, to be incorporated in organic synthesis schemes, but other applications are being explored as well to address problems in energy production, for instance, and to design greener chemical processes. The details of each of these approaches are discussed, and representative examples are provided. We conclude with some general remarks on the future of this field.
Collapse
Affiliation(s)
- Francisco Zaera
- Department of Chemistry and UCR Center for Catalysis, University of California, Riverside, California 92521, United States
| |
Collapse
|
6
|
“Living” Imprinted-Polymer Reactor Containing Sea Cucumber-Inspired Dynamic Domains for Evoking Selectivity-Online/Offline Catalytic Ability. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-021-02091-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Zhang J, Qin L, Yang Y, Liu X. Porous carbon nanospheres aerogel based molecularly imprinted polymer for efficient phenol adsorption and removal from wastewater. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Bose I, Zhao Y. Tandem Aldol Reaction from Acetal Mixtures by an Artificial Enzyme with Site-Isolated Acid and Base Functionalities. ACS APPLIED POLYMER MATERIALS 2021; 3:2776-2784. [PMID: 34447941 PMCID: PMC8384266 DOI: 10.1021/acsapm.1c00299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Site-isolation of catalysts can enable incompatible catalysts such as acid and base to be used in one pot for enhanced efficiency and other benefits. Although many synthetic platforms have been reported for this purpose, they generally do not possess the exquisite selectivity of site-isolated enzymes in nature. Here we report water-soluble protein-sized nanoparticles with site-isolated acids in the core and amines on the surface. The catalysts were made through molecular imprinting of cross-linked micelles, followed by facile one-step photoaffinity labeling of the imprinted binding site. With a tunable, substrate-specific active site, the bifunctional artificial enzyme catalyzed highly selective tandem cross aldol reaction between acetone and mixtures of isomeric aryl acetals. It could also transform a less reactive substrate over a more reactive one.
Collapse
|
9
|
Enhanced controllable degradation ability of magnetic imprinted photocatalyst via photoinduced surface imprinted technique for ciprofloxacin selectively degradation. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Bose I, Fa S, Zhao Y. Tunable Artificial Enzyme-Cofactor Complex for Selective Hydrolysis of Acetals. J Org Chem 2021; 86:1701-1711. [PMID: 33397107 PMCID: PMC8170846 DOI: 10.1021/acs.joc.0c02519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Enzymes frequently use unimpressive functional groups such as weak carboxylic acids for efficient, highly selective catalysis including hydrolysis of acetals and even amides. Much stronger acids generally have to be used for such purposes in synthetic systems. We report here a method to position an acidic group near the acetal oxygen of 2-(4-nitrophenyl)-1,3-dioxolane bound by an artificial enzyme. The hydrolytic activity of the resulting artificial enzyme-cofactor complex was tuned by the number and depth of the active site as well as the hydrophobicity and acidity of the cofactor. The selectivity of the complex was controlled by the size and shape of the active site and enabled less reactive acetals to be hydrolyzed over more reactive ones.
Collapse
Affiliation(s)
- Ishani Bose
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111
| | - Shixin Fa
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111
| |
Collapse
|
11
|
Li X, Zhao Y. Synthetic Glycosidase Distinguishing Glycan and Glycosidic Linkage in Its Catalytic Hydrolysis. ACS Catal 2020; 10:13800-13808. [PMID: 34123483 DOI: 10.1021/acscatal.0c04038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Selective hydrolysis of carbohydrates is vital to the processing of these molecules in biology but has rarely been achieved with synthetic catalysts. The challenge is especially difficult because the catalyst needs to distinguish the inversion of a single hydroxyl and the α or β glycosidic bonds that join monosaccharide building blocks. Here we report synthetic glycosidase prepared through molecular imprinting within a cross-linked micelle. The nanoparticle catalyst resembles natural enzymes in dimension, water-solubility, and a hydrophilic/hydrophobic surface-core topology. Its boronic acid-functionalized active site binds its targeted glycoside substrate and an acid cofactor simultaneously, with the acidic group in close proximity to the exocyclic glycosidic oxygen. The hydrophobically anchored acid cofactor is tunable in acidity and causes selective cleavage of the targeted glycoside in mildly acidic water. Selectivity for both the glycan and the α/β glycosidic bond can be rationally designed through the molecular imprinting process.
Collapse
Affiliation(s)
- Xiaowei Li
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| |
Collapse
|
12
|
Bose I, Zhao Y. pH-Controlled Nanoparticle Catalysts for Highly Selective Tandem Henry Reaction from Mixtures. ACS Catal 2020; 10:13973-13977. [PMID: 34094653 DOI: 10.1021/acscatal.0c03468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nature has a remarkable ability to perform selective transformation of complex biological mixtures into desired products using enzymatic catalysts. We report the preparation of nanoparticle catalysts through molecular imprinting within cross-linked micelles. These catalysts were highly selective for their targeted substrates and could selectively hydrolyze less reactive acetals over more reactive ones even under basic conditions. Their catalytic activity and selectivity were tunable through rational postmodification of the active site. These properties enabled the nanoparticle catalysts to produce the desired β-nitro alcohol from a four-component acetal mixture in a tandem deprotection/Henry reaction that required incompatible acidic and basic catalysts in the two steps.
Collapse
Affiliation(s)
- Ishani Bose
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| |
Collapse
|
13
|
Chen MJ, Yang HL, Si YM, Tang Q, Chow CF, Gong CB. Photoresponsive Surface Molecularly Imprinted Polymers for the Detection of Profenofos in Tomato and Mangosteen. Front Chem 2020; 8:583036. [PMID: 33195073 PMCID: PMC7581910 DOI: 10.3389/fchem.2020.583036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/31/2020] [Indexed: 11/24/2022] Open
Abstract
As a moderately toxic organophosphorus pesticide, profenofos (PFF) is widely used in agricultural practice, resulting in the accumulation of a high amount of PFF in agricultural products and the environment. This will inevitably damage our health. Therefore, it is important to establish a convenient and sensitive method for the detection of PFF. This paper reports a photoresponsive surface-imprinted polymer based on poly(styrene-co-methyl acrylic acid) (PS-co-PMAA@PSMIPs) for the detection of PFF by using carboxyl-capped polystyrene microspheres (PS-co-PMAA), PFF, 4-((4-(methacryloyloxy)phenyl)diazenyl) benzoic acid, and triethanolamine trimethacrylate as the substrate, template, functional monomer, and cross-linker, respectively. PS-co-PMAA@PSMIP shows good photoresponsive properties in DMSO/H2O (3:1, v/v). Its photoisomerization rate constant exhibits a good linear relationship with PFF concentration in the range of 0~15 μmol/L. PS-co-PMAA@PSMIP was applied for the determination of PFF in spiked tomato and mangosteen with good recoveries ranging in 94.4-102.4%.
Collapse
Affiliation(s)
- Mei-jun Chen
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, China
| | - Hai-lin Yang
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, China
| | - Ya-min Si
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, China
| | - Qian Tang
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, China
| | - Cheuk-fai Chow
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong
| | - Cheng-bin Gong
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, China
| |
Collapse
|
14
|
Kuepfert M, Qu P, Cohen AE, Hoyt CB, Jones CW, Weck M. Reversible Photoswitching in Poly(2-oxazoline) Nanoreactors. Chemistry 2020; 26:11776-11781. [PMID: 32270529 DOI: 10.1002/chem.202000179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/06/2020] [Indexed: 12/21/2022]
Abstract
This contribution reports light responsive catalytic nanoreactors based on poly(2-oxazoline) diblock copolymers. The hydrophobic block of the copolymer is a random copolymer consisting of a spiropyran functionalized 2-oxazoline (SPOx) and 2-(but-3-yn-1-yl)-4,5-dihydrooxazole (ButynOx), while the hydrophilic block is based on 2-methyl-2-oxazoline (MeOx). The block copolymer is terminated with tris(2-aminoethyl) amine (TREN) that serves as catalyst in a Knoevenagel condensation. Four block copolymers with different ButynOx/SPOx and hydrophilic/hydrophobic ratios are synthesized and self-assembled through solvent exchange. Micelles and vesicles of various sizes are observed by TEM, which undergo morphological and size changes in response to irradiation with UV light. We hypothesize that these transformations in the nanostructures are caused by increases in the hydrophilicity of the hydrophobic block when spiropyran (SP) isomerizes to merocyanine (MC) in the presence of UV light. The reversible transition from micellar to vesicular nanoreactors resulted in increased reaction kinetics through improved substrate accessibility to the catalytic site, or termination of the catalytic reaction due to polymer precipitation. These nanoreactors present a promising platform towards photoregulating reaction outcomes based on changes in nanostructure morphology.
Collapse
Affiliation(s)
- Michael Kuepfert
- Molecular Design Institute and Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - Peiyuan Qu
- Molecular Design Institute and Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - Aaron E Cohen
- Molecular Design Institute and Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - Caroline B Hoyt
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0100, USA
| | - Christopher W Jones
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0100, USA
| | - Marcus Weck
- Molecular Design Institute and Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA
| |
Collapse
|
15
|
Deciphering the role of acid additives in chiral diamine-catalyzed asymmetric aldol reactions of cyclohexanones with aldehydes. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
|
17
|
Liu LT, Chen MJ, Yang HL, Huang ZJ, Tang Q, Chow CF, Gong CB, Zu MH, Xiao B. An NIR-light-responsive surface molecularly imprinted polymer for photoregulated drug release in aqueous solution through porcine tissue. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110253. [DOI: 10.1016/j.msec.2019.110253] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 09/05/2019] [Accepted: 09/24/2019] [Indexed: 12/13/2022]
|
18
|
Li X, Zhao Y. Chiral Gating for Size- and Shape-Selective Asymmetric Catalysis. J Am Chem Soc 2019; 141:13749-13752. [PMID: 31368701 DOI: 10.1021/jacs.9b06619] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A poor or mediocre stereoselectivity is a key roadblock for a chiral catalyst to find practical adoptions. We report a facile method to create a tunable chiral space near a chiral catalyst to augment its selectivity. The space was created rationally through templated polymerization within cross-linked micelles, using readily available amino acid derivatives. It provided gated entrance of reactants to the catalyst, enabling a mediocre prolinamide to catalyze aldol condensation in water with excellent yields and ee, in a size- and shape-selective manner.
Collapse
Affiliation(s)
- Xiaowei Li
- Department of Chemistry , Iowa State University , Ames , Iowa 50011-3111 , United States
| | - Yan Zhao
- Department of Chemistry , Iowa State University , Ames , Iowa 50011-3111 , United States
| |
Collapse
|
19
|
Affiliation(s)
- Jukka Niskanen
- Université de MontréalDépartement de chimie, C.P. 6128 Succursale Centre-Ville Montréal, QC H3 C 3 J7 Canada
| | - Jaana Vapaavuori
- Université de MontréalDépartement de chimie, C.P. 6128 Succursale Centre-Ville Montréal, QC H3 C 3 J7 Canada
- Department of Chemistry and Materials ScienceAalto University P.O. Box 16100 FI-00076 AALTO Finland
| |
Collapse
|
20
|
Hu L, Zhao Y. A Bait‐and‐Switch Method for the Construction of Artificial Esterases for Substrate‐Selective Hydrolysis. Chemistry 2019; 25:7702-7710. [DOI: 10.1002/chem.201900560] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Lan Hu
- Department of ChemistryIowa State University Ames IA 50011-3111 USA
| | - Yan Zhao
- Department of ChemistryIowa State University Ames IA 50011-3111 USA
| |
Collapse
|
21
|
An FQ, Li HF, Guo XD, Hu TP, Gao BJ, Gao JF. Design of novel “imprinting synchronized with crosslinking” surface imprinted technique and its application for selectively removing phenols from aqueous solution. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.01.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Gong CB, Wei YB, Chen MJ, Liu LT, Chow CF, Tang Q. Double imprinted photoresponsive polymer for simultaneous detection of phthalate esters in plastics. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Cegłowski M, Hoogenboom R. Molecularly Imprinted Poly(2-oxazoline) Based on Cross-Linking by Direct Amidation of Methyl Ester Side Chains. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01068] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Michał Cegłowski
- Supramolecular Chemistry Group, Centre of Macromolecular
Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular
Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| |
Collapse
|
24
|
Hu L, Zhao Y. Molecularly imprinted artificial esterases with highly specific active sites and precisely installed catalytic groups. Org Biomol Chem 2018; 16:5580-5584. [PMID: 30051894 DOI: 10.1039/c8ob01584h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A difficult challenge in synthetic enzymes is the creation of substrate-selective active sites with accurately positioned catalytic groups. Covalent molecular imprinting in cross-linked micelles afforded such active sites in protein-sized, water-soluble nanoparticle catalysts. Our method allowed a systematic tuning of the distance of the catalytic group to the bound substrate. The catalysts displayed enzyme-like kinetics and easily distinguished substrates with subtle structural differences.
Collapse
Affiliation(s)
- Lan Hu
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, USA.
| | | |
Collapse
|