1
|
Xie J, Li M, Wu Z, Zeng Y, Zhang S, Liu J, Zhong Q. Effect of pre-oxidation process on V 2O 5/AC catalyst for the selective catalytic reduction of NO x with NH 3. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:13534-13540. [PMID: 34595700 DOI: 10.1007/s11356-021-16491-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Activated coke-based catalysts have attracted extensive attention in denitration by selective catalytic reduction by NH3 (NH3-SCR), due to their excellent catalytic performance at low temperature. In the paper, the V2O5/AC catalyst was prepared by the impregnation method to investigate the effect of pre-oxidation process on its NH3-SCR activity. Activity test results show that the V2O5/AC catalyst with 4-h pre-oxidation exhibits the best NOx removal efficiency, which reaches the NOx conversion is over 75% in the range of 200-240 °C and exhibits an excellent resistance to SO2 and H2O. Characterization results demonstrate that the V4+ was oxidized by oxygen molecule during pre-oxidation process, which contributes to the formation of V5+ ions and surface-active oxygen species. The surface-active oxygen species are conducive to promoting the "fast SCR" reaction; thus, the pre-oxidized process can contribute to the superior NH3-SCR performance for V2O5/AC catalyst at low temperature.
Collapse
Affiliation(s)
- Jiahua Xie
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Mengyu Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Zihua Wu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Yiqing Zeng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Shule Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China.
| | - Jing Liu
- Shanghai Clear Science & Technology Co. Ltd, Nanjing, 210008, People's Republic of China
| | - Qin Zhong
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China.
| |
Collapse
|
2
|
Guo RT, Qin B, Wei LG, Yin TY, Zhou J, Pan WG. Recent progress of low-temperature selective catalytic reduction of NOx with NH3 over manganese oxide-based catalysts. Phys Chem Chem Phys 2022; 24:6363-6382. [DOI: 10.1039/d1cp05557g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selective catalytic reduction with NH3 (NH3−SCR) was the most efficient approach to mitigate the emission of nitrogen oxides (NOx). Although the conventional manganese oxide-based catalyst had gradually become a kind...
Collapse
|
3
|
Guo L, Lu J, Zhao Y, Wang C, Zhang C, Tang C, Dong L, Kong W, Li Q, Cao P. Pilot test of environment-friendly catalysts for the DeNO x of low-temperature flue gas from a coal-fired plant. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02142c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This figure reflects the process flow diagram of low-temperature SCR DeNOx and the test efficiency of 3400 h.
Collapse
|
4
|
Feng S, Zhou M, Han F, Zhong Z, Xing W. A bifunctional MnO @PTFE catalytic membrane for efficient low temperature NO -SCR and dust removal. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2019.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
Du Y, Liu J, Li X, Liu L, Wu X. SCR performance enhancement of NiMnTi mixed oxides catalysts by regulating assembling methods of LDHs‐Based precursor. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yali Du
- College of Chemistry and Chemical EngineeringJinzhong University Jinzhong 030619 People's Republic of China
| | - Jiangning Liu
- College of Chemistry and Chemical EngineeringTaiyuan University of Technology Taiyuan 030024 People's Republic of China
| | - Xiaojian Li
- College of Chemistry and Chemical EngineeringTaiyuan University of Technology Taiyuan 030024 People's Republic of China
| | - Lili Liu
- College of Chemistry and Chemical EngineeringTaiyuan University of Technology Taiyuan 030024 People's Republic of China
| | - Xu Wu
- College of Chemistry and Chemical EngineeringTaiyuan University of Technology Taiyuan 030024 People's Republic of China
| |
Collapse
|
6
|
Ye M, Cheng C, Li Y, Lin Y, Wang X, Chen G. Enhancement of the denitrification efficiency over low‐rank activated coke by doping with transition metal oxides. CAN J CHEM ENG 2020. [DOI: 10.1002/cjce.23698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Meng Ye
- School of Environmental Science and EngineeringTianjin University Tianjin China
- Beijing Engineering Research Center of Process Pollution Control, National Engineering Laboratory for Hydrometallurgical Cleaner Production TechnologyInstitute of Process Engineering, Chinese Academy of Sciences Beijing China
| | - Chungui Cheng
- Beijing Engineering Research Center of Process Pollution Control, National Engineering Laboratory for Hydrometallurgical Cleaner Production TechnologyInstitute of Process Engineering, Chinese Academy of Sciences Beijing China
| | - Yuran Li
- Beijing Engineering Research Center of Process Pollution Control, National Engineering Laboratory for Hydrometallurgical Cleaner Production TechnologyInstitute of Process Engineering, Chinese Academy of Sciences Beijing China
| | - Yuting Lin
- Beijing Engineering Research Center of Process Pollution Control, National Engineering Laboratory for Hydrometallurgical Cleaner Production TechnologyInstitute of Process Engineering, Chinese Academy of Sciences Beijing China
| | - Xue Wang
- Beijing Engineering Research Center of Process Pollution Control, National Engineering Laboratory for Hydrometallurgical Cleaner Production TechnologyInstitute of Process Engineering, Chinese Academy of Sciences Beijing China
| | - Guanyi Chen
- School of Environmental Science and EngineeringTianjin University Tianjin China
| |
Collapse
|
7
|
Wang H, Li G, Zhang S, Li Y, Zhao Y, Duan L, Zhang Y. Preparation of Cu-Loaded Biomass-Derived Activated Carbon Catalysts for Catalytic Wet Air Oxidation of Phenol. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b05750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Hongyu Wang
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Guoqiang Li
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Shuting Zhang
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Yuan Li
- Bayanur Electric Power Bureau Maintenance and Test Management Office, Inner Mongolia Electric Power (Group)Co., Ltd., Bureau 015000, Inner Mongolia, China
| | - Yongle Zhao
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Liyuan Duan
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Yongfa Zhang
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| |
Collapse
|
8
|
Li G, Mao D, Chao M, Li G, Yu J, Guo X. Significantly enhanced Pb resistance of a Co-modified Mn–Ce–O x/TiO 2 catalyst for low-temperature NH 3-SCR of NO x. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01066a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Co modification can significantly improve the performance for low-temperature NH3-SCR of NOx and the Pb resistance of the Mn–Ce–Ox/TiO2 catalyst.
Collapse
Affiliation(s)
- Gehua Li
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- PR China
| | - Dongsen Mao
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- PR China
| | - Mengxi Chao
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- PR China
| | - Gang Li
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- PR China
| | - Jun Yu
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- PR China
| | - Xiaoming Guo
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- PR China
| |
Collapse
|
9
|
Hou B, Du Y, Liu X, Ci C, Wu X, Xie X. Tunable preparation of highly dispersed Ni x Mn-LDO catalysts derived from Ni x Mn-LDHs precursors and application in low-temperature NH 3-SCR reactions. RSC Adv 2019; 9:24377-24385. [PMID: 35527889 PMCID: PMC9069834 DOI: 10.1039/c9ra04578c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 07/25/2019] [Indexed: 01/12/2023] Open
Abstract
A series of Ni x Mn bimixed metal oxides (Ni x Mn-LDO) were prepared via calcining Ni x Mn layered double hydroxides (Ni x Mn-LDHs) precursors at 400 °C and applied as catalysts in the selective catalytic reduction (SCR) of NO x with NH3. The DeNO x performance of catalysts was optimized by adjusting the Ni/Mn molar ratios of Ni x Mn-LDO precursors, in which Ni5Mn-LDO exhibited above 90% NO x conversion and N2 selectivity at a temperature zone of 180-360 °C. Besides, Ni5Mn-LDO possessed considerable SO2 & H2O resistance and outstanding stability. Multiple characterization techniques were used to analyze the physicochemical properties of the catalysts. The analysis results indicated that all catalysts had the same active species Ni6MnO8, while their particle sizes showed significant differences. Notably, the uniform distribution of active species particles in the Ni5Mn-LDO catalyst provided the rich surface acidity and suitable redox ability which were the primary causes for its desirable DeNO x property.
Collapse
Affiliation(s)
- Benhui Hou
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology Taiyuan 030024 PR China +86-351-6018528 +86-351-6018564 +86-351-6018528 +86-351-6018564
| | - Yali Du
- College of Chemistry and Chemical Engineering, Jinzhong University Jinzhong 030619 PR China
| | - Xuezhen Liu
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology Taiyuan 030024 PR China +86-351-6018528 +86-351-6018564 +86-351-6018528 +86-351-6018564
| | - Chao Ci
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology Taiyuan 030024 PR China +86-351-6018528 +86-351-6018564 +86-351-6018528 +86-351-6018564
| | - Xu Wu
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology Taiyuan 030024 PR China +86-351-6018528 +86-351-6018564 +86-351-6018528 +86-351-6018564
| | - Xianmei Xie
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology Taiyuan 030024 PR China +86-351-6018528 +86-351-6018564 +86-351-6018528 +86-351-6018564
| |
Collapse
|
10
|
Wang J, Lu P, Su W, Xing Y, Li R, Li Y, Zhu T, Yue H, Cui Y. Study on the denitrification performance of Fe xLa yO z/activated coke for NH 3-SCR and the effect of CO escaped from activated coke at mid-high temperature on catalytic activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:20248-20263. [PMID: 31098908 DOI: 10.1007/s11356-019-05090-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
Currently, activated coke is widely used in the removal of multiple pollutants from industrial flue gas. In this paper, a series of novel FexLayOz/AC catalysts was prepared by the incipient wetness impregnation for NH3-SCR denitrification reaction. The introduction of Fe-La bimetal oxides significantly improved the denitrification performance of activated coke at mid-high temperature, and 4% Fe0.3La0.7O1.5/AC exhibited a superior NOx conversion efficiency of 90.1% at 400 °C. The catalysts were further characterized by BET, SEM, XRD, Raman, EPR, XPS, FTIR, NH3-TPD, H2-TPR, et al., whose results showed that the perovskite-type oxide of LaFeO3 and oxygen vacancies were produced on the catalysts' surfaces during roasting. Fe-La doping enhanced the amount of acid sites (mainly Lewis and other stronger acid sites) and the content of multifarious oxygen species, which were beneficial for NOx removal at mid-high temperature. Moreover, it was investigated that the effect of released CO from activated coke at mid-high temperature on the NOx removal through the lifetime test, in which it was found that a large amount of CO produced by pyrolysis of activated coke could promote the NOx removal, and long-term escaping of CO on the activated coke carrier did not have a significant negative impact on catalytic performance. The results of the TG-IR test showed that volatile matter is released from the activated coke while TG results showed that the weight loss rate of 4% Fe0.3La0.7O1.5/AC only was 0.0015~0.007%/min at 300-400 °C. Hence, 4% Fe0.3La0.7O1.5/AC had excellent thermal stability and denitrification performance to be continuously used at mid-high temperature. Finally, the mechanisms were proposed on the basis of experiments and characterization results.
Collapse
Affiliation(s)
- Jiaqing Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Pei Lu
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wei Su
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Yi Xing
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Rui Li
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yuran Li
- National Engineering Laboratory for Cleaner Hydrometallurgical Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tingyu Zhu
- National Engineering Laboratory for Cleaner Hydrometallurgical Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huifang Yue
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yongkang Cui
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
11
|
Abstract
The importance of the low-temperature selective catalytic reduction (LT-SCR) of NOx by NH3 is increasing due to the recent severe pollution regulations being imposed around the world. Supported and mixed transition metal oxides have been widely investigated for LT-SCR technology. However, these catalytic materials have some drawbacks, especially in terms of catalyst poisoning by H2O or/and SO2. Hence, the development of catalysts for the LT-SCR process is still under active investigation throughout seeking better performance. Extensive research efforts have been made to develop new advanced materials for this technology. This article critically reviews the recent research progress on supported transition and mixed transition metal oxide catalysts for the LT-SCR reaction. The review covered the description of the influence of operating conditions and promoters on the LT-SCR performance. The reaction mechanism, reaction intermediates, and active sites are also discussed in detail using isotopic labelling and in situ FT-IR studies.
Collapse
|
12
|
Wu X, Li X, Du Y, Wang R, Guo X, Hou B. NOx Removal Performance Optimization of NiMnTi Mixed Oxide Catalysts by Tuning the Redox Capability. ChemCatChem 2019. [DOI: 10.1002/cctc.201802050] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xu Wu
- Department of Chemistry and Chemical EngineeringTaiyuan University of Technology Taiyuan 030024 P.R. China
| | - XiaoJian Li
- Department of Chemistry and Chemical EngineeringTaiyuan University of Technology Taiyuan 030024 P.R. China
| | - Yali Du
- Department of Chemistry and Chemical EngineeringJinzhong University Jinzhong 030619 P.R. China
| | - RuoNan Wang
- Department of Chemistry and Chemical EngineeringTaiyuan University of Technology Taiyuan 030024 P.R. China
| | - XingMei Guo
- Department of Chemistry and Chemical EngineeringTaiyuan University of Technology Taiyuan 030024 P.R. China
| | - BenHui Hou
- Department of Chemistry and Chemical EngineeringTaiyuan University of Technology Taiyuan 030024 P.R. China
| |
Collapse
|