1
|
Wang Y, Sourav S, Malizia JP, Thompson B, Wang B, Kunz MR, Nikolla E, Fushimi R. Deciphering the Mechanistic Role of Individual Oxide Phases and Their Combinations in Supported Mn–Na 2WO 4 Catalysts for Oxidative Coupling of Methane. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yixiao Wang
- Catalysis and Transient Kinetics Group, Idaho National Laboratory, Idaho Falls, Idaho 83415, United States
| | - Sagar Sourav
- Catalysis and Transient Kinetics Group, Idaho National Laboratory, Idaho Falls, Idaho 83415, United States
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Jason P. Malizia
- Catalysis and Transient Kinetics Group, Idaho National Laboratory, Idaho Falls, Idaho 83415, United States
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Brooklyne Thompson
- Catalysis and Transient Kinetics Group, Idaho National Laboratory, Idaho Falls, Idaho 83415, United States
- Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| | - Bingwen Wang
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| | - M. Ross Kunz
- Catalysis and Transient Kinetics Group, Idaho National Laboratory, Idaho Falls, Idaho 83415, United States
| | - Eranda Nikolla
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Rebecca Fushimi
- Catalysis and Transient Kinetics Group, Idaho National Laboratory, Idaho Falls, Idaho 83415, United States
| |
Collapse
|
2
|
Extremely low barrier activation of methane on spin-polarized ferryl ion [FeO]2+ at the four-membered ring of zeolite. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Matus Е, Ismagilov I, Mikhaylova E, Ismagilov Z. Hydrogen Production from Coal Industry Methane. EURASIAN CHEMICO-TECHNOLOGICAL JOURNAL 2022. [DOI: 10.18321/ectj1320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Coal industry methane is a fossil raw material that can serve as an energy carrier for the production of heat and electricity, as well as a raw material for obtaining valuable products for the chemical industry. To ensure the safety of coal mining, rational environmental management and curbing global warming, it is important to develop and improve methods for capturing and utilizing methane from the coal industry. This review looks at the scientific basis and promising technologies for hydrogen production from coal industry methane and coal production. Technologies for catalytic conversion of all types of coal industry methane (Ventilation Air Methane – VAM, Coal Mine Methane – CMM, Abandoned Mine Methane – AMM, Coal-Bed Methane – CBM), differing in methane concentration and methane-to-air ratio, are discussed. The results of studies on the creation of a number of efficient catalysts for hydrogen production are presented. The great potential of hybrid methods of processing natural coal and coal industry methane has been demonstrated.
Collapse
|
4
|
Sourav S, Kiani D, Wang Y, Baltrusaitis J, Fushimi RR, Wachs IE. Molecular structure and catalytic promotional effect of Mn on supported Na2WO4/SiO2 catalysts for oxidative coupling of methane (OCM) reaction. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
5
|
Ismagilov I, Vosmerikov A, Korobitsyna L, Matus E, Kerzhentsev M, Stepanov A, Mihaylova E, Ismagilov Z. Promoters for Improvement of the Catalyst Performance in Methane Valorization Processes. EURASIAN CHEMICO-TECHNOLOGICAL JOURNAL 2021. [DOI: 10.18321/ectj1099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In this work, the introduction of modifying additives in the composition of catalysts is considered as an effective mode of improving functional characteristics of materials for two processes of methane conversion into valuable products – methane dehydroaromatization (DHA of CH4) into benzene and hydrogen and autothermal reforming of methane (ATR of CH4) into synthesis gas. The effect of type and content of promoters on the structural and electronic state of the active component as well as catalyst activity and stability against deactivation is discussed. For DHA of CH4 the operation mode of additives M = Ag, Ni, Fe in the composition of Mo-M/ZSM-5 catalysts was elucidated and correlated with the product yield and coke content. It was shown that when Ag serves as a promoter, the duration of the catalyst stable operation is enhanced due to a decrease in the rate of the coke formation. In the case of Ni and Fe additives, the Ni-Мо and Fe-Mo alloys are formed that retain the catalytic activity for a long time in spite of the carbon accumulation. For ATR of CH4, the influence of M = Pd, Pt, Re, Mo, Sn in the composition of Ni-M catalysts supported on La2O3 or Ce0.5Zr0.5O2/Al2O3 was elucidated. It was demonstrated that for Ni-M/La2O3 catalysts, Pd is a more efficient promoter that improves the reducibility of Ni cations and increases the content of active Nio centers. In the case of Ni-M/Ce0.5Zr0.5O2/Al2O3 samples, Re is considered the best promoter due to the formation of an alloy with anti-coking and anti-sintering properties. The use of catalysts with optimal promoter type and its content provides high efficiency of methane valorization processes.
Collapse
|
6
|
Kiani D, Sourav S, Taifan W, Calatayud M, Tielens F, Wachs IE, Baltrusaitis J. Existence and Properties of Isolated Catalytic Sites on the Surface of β-Cristobalite-Supported, Doped Tungsten Oxide Catalysts (WOx/β-SiO2, Na-WOx/β-SiO2, Mn-WOx/β-SiO2) for Oxidative Coupling of Methane (OCM): A Combined Periodic DFT and Experimental Study. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05591] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniyal Kiani
- Department of Chemical and Biomolecular Engineering, Lehigh University, B336 Iacocca
Hall, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| | - Sagar Sourav
- Department of Chemical and Biomolecular Engineering, Lehigh University, B336 Iacocca
Hall, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| | - William Taifan
- Department of Chemical and Biomolecular Engineering, Lehigh University, B336 Iacocca
Hall, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| | - Monica Calatayud
- Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, LCT, F-75005 Paris, France
| | - Frederik Tielens
- General Chemistry (ALGC)-Materials Modelling Group, Vrije Universiteit Brussel (Free University Brussels-VUB), Pleinlaan 2, 1050 Brussel, Belgium
| | - Israel E. Wachs
- Department of Chemical and Biomolecular Engineering, Lehigh University, B336 Iacocca
Hall, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| | - Jonas Baltrusaitis
- Department of Chemical and Biomolecular Engineering, Lehigh University, B336 Iacocca
Hall, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
7
|
Kolesnichenko NV, Ezhova NN, Snatenkova YM. Lower olefins from methane: recent advances. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4900] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Modern methods for methane conversion to lower olefins having from 2 to 4 carbon atoms per molecule are generalized. Multistage processing of methane into ethylene and propylene via syngas or methyl chloride and methods for direct conversion of CH4 to ethylene are described. Direct conversion of syngas to olefins as well as indirect routes of the process via methanol or dimethyl ether are considered. Particular attention is paid to innovative methods of olefin synthesis. Recent achievements in the design of catalysts and development of new techniques for efficient implementation of oxidative coupling of methane and methanol conversion to olefins are analyzed and systematized. Advances in commercializing these processes are pointed out. Novel catalysts for Fischer – Tropsch synthesis of lower olefins from syngas and for innovative technique using oxide – zeolite hybrid catalytic systems are described. The promise of a new route to lower olefins by methane conversion via dimethyl ether is shown. Prospects for the synthesis of lower olefins via methyl chloride and using non-oxidative coupling of methane are discussed. The most efficient processes used for processing of methane to lower olefins are compared on the basis of degree of conversion of carbonaceous feed, possibility to integrate with available full-scale production, number of reaction stages and thermal load distribution.
The bibliography includes 346 references.
Collapse
|
8
|
Yıldız M. Mesoporous TiO2-rutile supported MnxOy-Na2WO4: Preparation, characterization and catalytic performance in the oxidative coupling of methane. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.04.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Cheng F, Yang J, Yan L, Zhao J, Zhao H, Song H, Chou L. Effect of Calcination Temperature on the Characteristics and Performance of Solid Acid WO
3
/TiO
2
‐Supported Lithium‐Manganese Catalysts for the Oxidative Coupling of Methane. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801427] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fei Cheng
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Lanzhou Institute of Chemical Physics Chinese Academy of Sciences 730000 Lanzhou PR China
- Lanzhou Institute of Chemical Physics University of Chinese Academy of Sciences 100049 Beijing PR China
| | - Jian Yang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Lanzhou Institute of Chemical Physics Chinese Academy of Sciences 730000 Lanzhou PR China
| | - Liang Yan
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Lanzhou Institute of Chemical Physics Chinese Academy of Sciences 730000 Lanzhou PR China
| | - Jun Zhao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Lanzhou Institute of Chemical Physics Chinese Academy of Sciences 730000 Lanzhou PR China
| | - Huahua Zhao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Lanzhou Institute of Chemical Physics Chinese Academy of Sciences 730000 Lanzhou PR China
| | - Huanling Song
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Lanzhou Institute of Chemical Physics Chinese Academy of Sciences 730000 Lanzhou PR China
| | - Lingjun Chou
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Lanzhou Institute of Chemical Physics Chinese Academy of Sciences 730000 Lanzhou PR China
- Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics Chinese Academy of Sciences 215123 Suzhou PR China
| |
Collapse
|
10
|
Impact of chloride ions on the oxidative coupling of methane over Li/SnO2 catalyst. REACTION KINETICS MECHANISMS AND CATALYSIS 2018. [DOI: 10.1007/s11144-018-1477-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|