1
|
Tu JL, Huang B. Titanium in photocatalytic organic transformations: current applications and future developments. Org Biomol Chem 2024; 22:6650-6664. [PMID: 39118484 DOI: 10.1039/d4ob01152j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Titanium, as an important transition metal, has garnered extensive attention in both industry and academia due to its excellent mechanical properties, corrosion resistance, and unique reactivity in organic synthesis. In the field of organic photocatalysis, titanium-based compounds such as titanium dioxide (TiO2), titanocenes (Cp2TiCl2, CpTiCl3), titanium tetrachloride (TiCl4), tetrakis(isopropoxy)titanium (Ti(OiPr)4), and chiral titanium complexes have demonstrated distinct reactivity and selectivity. This review focuses on the roles of these titanium compounds in photocatalytic organic reactions, and highlights the reaction pathways such as photo-induced single-electron transfer (SET) and ligand-to-metal charge transfer (LMCT). By systematically surveying the latest advancements in titanium-involved organic photocatalysis, this review aims to provide references for further research and technological innovation within this fast-developing field.
Collapse
Affiliation(s)
- Jia-Lin Tu
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519085, China.
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Binbin Huang
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519085, China.
| |
Collapse
|
2
|
Shi G, Dong L, Feng Y. An Investigation of N-Hydroxyphthalimide Catalyzed Aerobic Oxidation of Toluene without Metal Ions in Liquid Phase: Effect of Solvents and Phase Transfer Catalysts. Molecules 2024; 29:3066. [PMID: 38999020 PMCID: PMC11243731 DOI: 10.3390/molecules29133066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/22/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024] Open
Abstract
The selective oxidation of toluene to yield value-added oxygenates, such as benzyl alcohol, benzaldehyde, and benzoic acid, via dioxygen presents a chlorine-free approach under benign conditions. Metal-free catalytic processes are preferred to avoid metal ion contamination. In this study, we employed N-hydroxyphthalimide (NHPI) as a catalyst for the aerobic oxidation of toluene to its oxygenated derivatives. The choice of solvent exerted a significant impact on the catalytic activity and selectivity of the catalyst NHPI at reaction temperatures exceeding 70 °C. Notably, hexafluoroisopropanol substantially enhanced the selective production of benzaldehyde. Furthermore, we identified didecyl dimethyl ammonium bromide, featuring two symmetrical long hydrophobic chains, as a potent enhancer of NHPI for the solvent-free aerobic oxidation of toluene. This effect is ascribed to its unique symmetrical structure, extraction capabilities, and resistance to thermal and acid/base conditions. Based on the product distribution and control experiments, we proposed a plausible reaction mechanism. These findings may inform the industrial synthesis of oxygenated derivatives from toluene.
Collapse
Affiliation(s)
- Guojun Shi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Longsheng Dong
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Ya Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
3
|
Abstract
Nitroxides, also known as nitroxyl radicals, are long-lived or stable radicals with the general structure R1R2N-O•. The spin distribution over the nitroxide N and O atoms contributes to the thermodynamic stability of these radicals. The presence of bulky N-substituents R1 and R2 prevents nitroxide radical dimerization, ensuring their kinetic stability. Despite their reactivity toward various transient C radicals, some nitroxides can be easily stored under air at room temperature. Furthermore, nitroxides can be oxidized to oxoammonium salts (R1R2N═O+) or reduced to anions (R1R2N-O-), enabling them to act as valuable oxidants or reductants depending on their oxidation state. Therefore, they exhibit interesting reactivity across all three oxidation states. Due to these fascinating properties, nitroxides find extensive applications in diverse fields such as biochemistry, medicinal chemistry, materials science, and organic synthesis. This review focuses on the versatile applications of nitroxides in organic synthesis. For their use in other important fields, we will refer to several review articles. The introductory part provides a brief overview of the history of nitroxide chemistry. Subsequently, the key methods for preparing nitroxides are discussed, followed by an examination of their structural diversity and physical properties. The main portion of this review is dedicated to oxidation reactions, wherein parent nitroxides or their corresponding oxoammonium salts serve as active species. It will be demonstrated that various functional groups (such as alcohols, amines, enolates, and alkanes among others) can be efficiently oxidized. These oxidations can be carried out using nitroxides as catalysts in combination with various stoichiometric terminal oxidants. By reducing nitroxides to their corresponding anions, they become effective reducing reagents with intriguing applications in organic synthesis. Nitroxides possess the ability to selectively react with transient radicals, making them useful for terminating radical cascade reactions by forming alkoxyamines. Depending on their structure, alkoxyamines exhibit weak C-O bonds, allowing for the thermal generation of C radicals through reversible C-O bond cleavage. Such thermally generated C radicals can participate in various radical transformations, as discussed toward the end of this review. Furthermore, the application of this strategy in natural product synthesis will be presented.
Collapse
Affiliation(s)
- Dirk Leifert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|
4
|
Lisicki D, Orlińska B, Martyniuk T, Dziuba K, Bińczak J. Selective Oxidation of Cyclohexanone to Adipic Acid Using Molecular Oxygen in the Presence of Alkyl Nitrites and Transition Metals as Catalysts. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5722. [PMID: 37630013 PMCID: PMC10456800 DOI: 10.3390/ma16165722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
This paper presents a not previously reported catalytic system consisting of transition metals Co2+ and Mn2+ and alkyl nitrites R-ONO for the oxidation of cyclohexanone with oxygen to adipic acid. The influence of type and amount of catalyst, temperature, time, and type of raw material on conversion and product composition were determined. In addition, the oxidation of selected cyclic ketones such as cyclopentanone, cyclohexanone, cyclooctanone, cyclododecanone, 2-methylcyclohexanone, 3-methylcyclohexanone, and 4-methylcyclohexanone in acetic acid as solvent was performed. The results showed that R-ONO systems, under established reaction conditions, form NO·radicals, which oxidize to NO2 under a strong oxidization reaction environment. The Co2+/Mn2+/NO2 system was shown to be highly active in the oxidation of cyclic ketones with oxygen.
Collapse
Affiliation(s)
- Dawid Lisicki
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
| | - Beata Orlińska
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
| | - Tomasz Martyniuk
- Grupa Azoty Zakłady Azotowe “Puławy” S.A., Al. Tysiąclecia Państwa Polskiego 13, 24-110 Puławy, Poland; (T.M.); (K.D.); (J.B.)
| | - Krzysztof Dziuba
- Grupa Azoty Zakłady Azotowe “Puławy” S.A., Al. Tysiąclecia Państwa Polskiego 13, 24-110 Puławy, Poland; (T.M.); (K.D.); (J.B.)
| | - Jakub Bińczak
- Grupa Azoty Zakłady Azotowe “Puławy” S.A., Al. Tysiąclecia Państwa Polskiego 13, 24-110 Puławy, Poland; (T.M.); (K.D.); (J.B.)
| |
Collapse
|
5
|
Baeza Cinco MÁ, Wu G, Telser J, Hayton TW. Structural and Spectroscopic Characterization of a Zinc-Bound N-Oxyphthalimide Radical. Inorg Chem 2022; 61:13250-13255. [PMID: 35972238 DOI: 10.1021/acs.inorgchem.2c01765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thermolysis of a 1:1:1 mixture of MeLH (MeL = {(2,6-iPr2C6H3)NC(Me)}2CH), N-hydroxyphthalimide (HOPth), and diethylzinc in toluene at 77 °C provided [MeLZn(OPth)] (1) in good yield after workup. The subsequent reduction of 1 with 1.3 equiv of KC8 and 1 equiv of 2.2.2-cryptand, in tetrahydrofuran, provided [K(2.2.2-cryptand)][MeLZn(OPth)] (2) in 74% yield after workup. Characterization of 2 via X-ray crystallography and electron paramagnetic resonance spectroscopy reveals the presence of an S = 1/2 radical on the N-oxyphthalimide ligand. Importantly, these data represent the first structural and spectroscopic confirmation of the redox activity of a metal-bound N-oxyphthalimide fragment, expanding the range of structurally characterized redox-active ligands.
Collapse
Affiliation(s)
- Miguel Á Baeza Cinco
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93016, United States
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93016, United States
| | - Joshua Telser
- Department of Biological, Chemical and Physical Sciences, Roosevelt University, 430 South Michigan Avenue. Chicago, Illinois 60605-1394, United States
| | - Trevor W Hayton
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93016, United States
| |
Collapse
|
6
|
Metal-free catalyzed aerobic oxidation of 2-nitro-4-methylsulfone toluene to 2-nitro-4-methylsulfonylbenzoic acid using a continuous-flow reactor. J Flow Chem 2022. [DOI: 10.1007/s41981-022-00225-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Li H, Wang Y, Yao J. Aerobic Oxidations via Organocatalysis: A Mechanistic Perspective. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1661-6124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractThis review focuses on recent advances and mechanistic views of aerobic C(sp3)–H oxidations catalyzed by organocatalysts, where metal catalysis and photocatalysis are not included.1 Introduction2 Carbanion Route: TBD-Catalyzed C(sp3)–H Oxygenation2.1 α-Hydroxylation of Ketones2.2 Carbonylation of Benzyl C(sp3)–H3 Radical Route: NHPI-Catalyzed C(sp3)–H Oxidation3.1 N-Oxyl Radicals and Mechanisms3.2 Oxygenation of Benzyl C(sp3)–H3.3 Solvent Effects4 Hydride-Transfer Route: TEMPO-Catalyzed Oxidations4.1 Oxoammonium Cation and Mechanisms4.2 Dehydrogenation of Alcohols4.3 Oxygenation of Benzyl C(sp3)–H5 Conclusions and Outlook
Collapse
Affiliation(s)
- Haoran Li
- Department of Chemistry and ZJU-NHU United R&D Center, Zhejiang University
- State Key Laboratory of Chemical Engineering and College of Chemical and Biological Engineering, Zhejiang University
| | - Yongtao Wang
- Department of Chemistry and ZJU-NHU United R&D Center, Zhejiang University
- Center of Chemistry for Frontier Technologies, Zhejiang University
| | - Jia Yao
- Department of Chemistry and ZJU-NHU United R&D Center, Zhejiang University
| |
Collapse
|
8
|
Zhu L, Luo Y, He Y, Yang M, Zhang Y, Fan M, Li Q. Selective catalytic synthesis of bio-based high value chemical of benzoic acid from xylan with Co2MnO4@MCM-41 catalyst. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
9
|
SBA-15 Supported Silver Catalyst for the Efficient Aerobic Oxidation of Toluene Under Solvent-Free Conditions. Catal Letters 2021. [DOI: 10.1007/s10562-021-03845-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Suprun W, Sheparovych R, Hrynda Y, Khavunko O, Opeida I. Supported transition metals oxides and N-hydroxyphthalimide as binary catalytic systems for the liquid-phase oxidation of cumene. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Klimochkin YN, Ivleva EA. Reaction of 1,3,5,7-Tetramethyladamantane with Nitric Acid. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428021050122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Selective aerobic oxidation of toluene to benzaldehyde catalyzed by covalently anchored N-hydroxyphthalimide and cobaltous ions. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Klimochkin YN, Ivleva EA, Zaborskaya MS. Synthesis of Diamantane Derivatives in Nitric Acid Media. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428021020081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Yang L, Liu P, Zhang HY, Zhang Y, Zhao J. Catalytic Oxidation of o-Chlorotoluene with Oxygen to o-Chlorobenzaldehyde in a Microchannel Reactor. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Lijun Yang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P. R. China
- Tianjin Taipu Pharmaceutical Ltd., Tianjin 300193, P. R. China
| | - Peng Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Hong-yu Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Yuecheng Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P. R. China
- Hebei Provincial Key Lab of Green Chemical Technology and High Efficient Energy Saving, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Jiquan Zhao
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P. R. China
| |
Collapse
|
15
|
Li F, Tang S, Tang Z, Ye L, Li H, Niu F, Sun X. Synergistic Catalytic Effect of N-Hydroxyphthalimide/Cobalt Tetraamide Phthalocyanine and Its Application for Aerobic Oxidation of Hydrocarbons and Alcohols. Catal Letters 2020. [DOI: 10.1007/s10562-020-03283-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Onomura O, Yamamoto K, Toguchi H, Harada T, Kuriyama M. Oxidative C-C Bond Cleavage of N-Protected Cyclic Amines by HNO3-TFA System. HETEROCYCLES 2020. [DOI: 10.3987/com-19-s(f)31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
LaMartina KB, Kuck HK, Oglesbee LS, Al-Odaini A, Boaz NC. Selective benzylic C-H monooxygenation mediated by iodine oxides. Beilstein J Org Chem 2019; 15:602-609. [PMID: 30931001 PMCID: PMC6423598 DOI: 10.3762/bjoc.15.55] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/19/2019] [Indexed: 12/30/2022] Open
Abstract
A method for the selective monooxdiation of secondary benzylic C–H bonds is described using an N-oxyl catalyst and a hypervalent iodine species as a terminal oxidant. Combinations of ammonium iodate and catalytic N-hydroxyphthalimide (NHPI) were shown to be effective in the selective oxidation of n-butylbenzene directly to 1-phenylbutyl acetate in high yield (86%). This method shows moderate substrate tolerance in the oxygenation of substrates containing secondary benzylic C–H bonds, yielding the corresponding benzylic acetates in good to moderate yield. Tertiary benzylic C–H bonds were shown to be unreactive under similar conditions, despite the weaker C–H bond. A preliminary mechanistic analysis suggests that this NHPI-iodate system is functioning by a radical-based mechanism where iodine generated in situ captures formed benzylic radicals. The benzylic iodide intermediate then solvolyzes to yield the product ester.
Collapse
Affiliation(s)
- Kelsey B LaMartina
- Department of Chemistry and Physics, North Central College, 30 N. Brainard Street, Naperville, IL 60540 USA
| | - Haley K Kuck
- Department of Chemistry and Physics, North Central College, 30 N. Brainard Street, Naperville, IL 60540 USA
| | - Linda S Oglesbee
- Department of Chemistry and Physics, North Central College, 30 N. Brainard Street, Naperville, IL 60540 USA
| | - Asma Al-Odaini
- Department of Chemistry and Physics, North Central College, 30 N. Brainard Street, Naperville, IL 60540 USA
| | - Nicholas C Boaz
- Department of Chemistry and Physics, North Central College, 30 N. Brainard Street, Naperville, IL 60540 USA.,Department of Chemistry, Frick Chemical Laboratory, Princeton University, Washington Road, Princeton, NJ 08544 USA.,Permanent address: Department of Chemistry, North Central College, 30 N. Brainard Street, Naperville, IL 60540 USA; phone: +1-630-637-5187
| |
Collapse
|
18
|
Li T, Li J, Zhu Z, Pan W, Wu S. Cobalt( ii)-catalyzed benzylic oxidations with potassium persulfate in TFA/TFAA. RSC Adv 2019; 9:20879-20883. [PMID: 35515535 PMCID: PMC9065695 DOI: 10.1039/c9ra03346g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 06/27/2019] [Indexed: 11/21/2022] Open
Abstract
A cobalt-catalyzed C(sp3)–H oxygenation reaction to furnish aldehyde was herein reported. This transformation demonstrated high chemo-selectivity, and tolerated various methylarenes bearing electron-withdrawing substituents. This reaction provided rapid access to diverse aldehydes form methylarenes. Notably, TFA/TFAA was used for the first time as a mixed solvent in cobalt-catalyzed oxygenation of benzylic methylenes. A Co-catalyzed C(sp3)–H oxygenation reaction to furnish diverse aldehydes from methylarenes in TFA/TFAA is reported. This transformation demonstrated high chemo-selectivity, and tolerated with various methylarenes bearing electron-withdrawing substituents.![]()
Collapse
Affiliation(s)
- Tianlei Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Peking Union Medical College
- Chinese Academy of Medical Sciences
- Beijing
| | - Jishun Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Peking Union Medical College
- Chinese Academy of Medical Sciences
- Beijing
| | - Zihao Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Peking Union Medical College
- Chinese Academy of Medical Sciences
- Beijing
| | - Weidong Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants
- Guizhou Medcial University
- Guiyang 550014
- China
| | - Song Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Peking Union Medical College
- Chinese Academy of Medical Sciences
- Beijing
| |
Collapse
|
19
|
Organosuperbase dendron manganese complex grafted on magnetic nanoparticles; heterogeneous catalyst for green and selective oxidation of ethylbenzene, cyclohexene and oximes by molecular oxygen. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.09.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Li P, Sun J, Xu X, Mi Z, Lin Y, Cheng J, Bai R, Xie Y. Ferric nitrate-promoted oxidative esterification of toluene with N -hydroxyphthalimide: Synthesis of N -hydroxyimide esters. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.05.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|