1
|
Chen Y, Chen L, Li Y, Shen K. Metal-Organic Frameworks as a New Platform to Construct Ordered Mesoporous Ce-Based Oxides for Efficient CO 2 Fixation under Ambient Conditions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303235. [PMID: 37269208 DOI: 10.1002/smll.202303235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/23/2023] [Indexed: 06/04/2023]
Abstract
Metal-organic frameworks (MOFs) are proved to be good precursors to derive various nanomaterials with desirable functions, but so far the controllable synthesis of ordered mesoporous derivatives from MOFs has not been achieved. Herein, this work reports, for the first time, the construction of MOF-derived ordered mesoporous (OM) derivatives by developing a facile mesopore-inherited pyrolysis-oxidation strategy. This work demonstrates a particularly elegant example of this strategy, which involves the mesopore-inherited pyrolysis of OM-CeMOF into a OM-CeO2 @C composite, followed by the oxidation removal of its residual carbon, affording the corresponding OM-CeO2 . Furthermore, the good tunability of MOFs helps to allodially introduce zirconium into OM-CeO2 to regulate its acid-base property, thus boosting its catalytic activity for CO2 fixation. Impressively, the optimized Zr-doped OM-CeO2 can achieve above 16 times higher catalytic activity than its solid CeO2 counterpart, representing the first metal oxide-based catalyst to realize the complete cycloaddition of epichlorohydrin with CO2 under ambient temperature and pressure. This study not only develops a new MOF-based platform for enriching the family of ordered mesoporous nanomaterials, but also demonstrates an ambient catalytic system for CO2 fixation.
Collapse
Affiliation(s)
- Yimin Chen
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Liyu Chen
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yingwei Li
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Kui Shen
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
2
|
Boric acid as a hydrogen bond donor with TBAB catalyze the cycloaddition of CO2 to internal bio-epoxides under solvent-free conditions. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
3
|
Poolwong J, Aomchad V, Del Gobbo S, Kleij AW, D'Elia V. Simple Halogen-Free, Biobased Organic Salts Convert Glycidol to Glycerol Carbonate under Atmospheric CO 2 Pressure. CHEMSUSCHEM 2022; 15:e202200765. [PMID: 35726476 DOI: 10.1002/cssc.202200765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Glycerol carbonate (GC) has emerged as an attractive synthetic target due to various promising technological applications. Among several viable strategies to produce GC from CO2 and glycerol and its derivatives, the cycloaddition of CO2 to glycidol represents an atom-economic an efficient strategy that can proceed via a halide-free manifold through a proton-shuttling mechanism. Here, it was shown that the synthesis of GC can be promoted by bio-based and readily available organic salts leading to quantitative GC formation under atmospheric CO2 pressure and moderate temperatures. Comparative and mechanistic experiments using sodium citrate as the most efficient catalyst highlighted the role of both hydrogen bond donor and weakly basic sites in the organic salt towards GC formation. The citrate salt was also used as a catalyst for the conversion of other epoxy alcohols. Importantly, the discovery that homogeneous organic salts catalyze the target reaction inspired us to use metal alginates as heterogeneous and recoverable bio-based catalysts for the same process.
Collapse
Affiliation(s)
- Jitpisut Poolwong
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1, 21210, Payupnai, WangChan, Rayong, Thailand
| | - Vatcharaporn Aomchad
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1, 21210, Payupnai, WangChan, Rayong, Thailand
| | - Silvano Del Gobbo
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1, 21210, Payupnai, WangChan, Rayong, Thailand
| | - Arjan W Kleij
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science & Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Pg. Lluis Companys 23, 08010, Barcelona, Spain
| | - Valerio D'Elia
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1, 21210, Payupnai, WangChan, Rayong, Thailand
| |
Collapse
|
4
|
CeO2-ZrO2 Solid Solution Catalyzed and Moderate Acidic–Basic Sites Dominated Cycloaddition of CO2 with Epoxides: Halogen-Free Synthesis of Cyclic Carbonates. Catalysts 2022. [DOI: 10.3390/catal12060632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
For the production of cyclic carbonates from the cycloaddition of CO2 with epoxides, halogen pollution and product purity are two of the most common problems due to the usage of homogeneous halogen-containing catalysts such as ammonium salt and alkali metal halide. Hence, the development of a novel, halogen-free and efficient catalyst for the synthesis of high-purity cyclic carbonates is significant. Here, a series of acid–base bifunctional Ce1-xZrxO2 nanorods were successfully prepared. The Ce1-xZrxO2 nanorods could catalyze the cycloaddition of CO2 with epoxides efficiently without any halogen addition. Especially for the Ce0.7Zr0.3O2 catalyst, a conversion of 96% with 100% 1,2-butylene carbonate selectivity was achieved. The excellent catalytic performance of Ce1-xZrxO2 nanorods is attributed to the formation of the CeO2-ZrO2 solid solution, which contributes to abundant moderate acidic–basic active sites on the catalyst surface. It is the synergistic effect of moderate acidic–basic sites that dominates the conversion of CO2 with epoxides, which will supply important references for the synthesis of efficient metal oxide catalyst for the cycloaddition of CO2 with epoxides.
Collapse
|
5
|
Campisciano V, Valentino L, Morena A, Santiago-Portillo A, Saladino N, Gruttadauria M, Aprile C, Giacalone F. Carbon nanotube supported aluminum porphyrin-imidazolium bromide crosslinked copolymer: A synergistic bifunctional catalyst for CO2 conversion. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
Dhameliya TM, Nagar PR, Bhakhar KA, Jivani HR, Shah BJ, Patel KM, Patel VS, Soni AH, Joshi LP, Gajjar ND. Recent advancements in applications of ionic liquids in synthetic construction of heterocyclic scaffolds: A spotlight. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118329] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
L-Serine@ZnO as an efficient and reusable catalyst for synthesis of cyclic carbonates and formamides in presence of CO2 atmosphere. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
8
|
Tan J, Wang L, Hu YL. Multifunctional Periodic Mesoporous Organosilica Supported Benzotriazolium Ionic Liquid as an Efficient Nanocatalyst for Synergistic Transformation of CO
2
to Cyclic Carbonates. ChemistrySelect 2020. [DOI: 10.1002/slct.202000813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jin Tan
- College of Materials and Chemical Engineering, Key laboratory of inorganic nonmetallic crystalline and energy conversion materialsChina Three Gorges University Yichang 443002, Hubei province P. R. China
| | - Long Wang
- College of Materials and Chemical Engineering, Key laboratory of inorganic nonmetallic crystalline and energy conversion materialsChina Three Gorges University Yichang 443002, Hubei province P. R. China
| | - Yu Lin Hu
- College of Materials and Chemical Engineering, Key laboratory of inorganic nonmetallic crystalline and energy conversion materialsChina Three Gorges University Yichang 443002, Hubei province P. R. China
| |
Collapse
|
9
|
Onyenkeadi V, Aboelazayem O, Saha B. Systematic multivariate optimisation of butylene carbonate synthesis via CO2 utilisation using graphene-inorganic nanocomposite catalysts. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.03.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Yang Y, Li F, Yang C, Jia L, Yang L, Xia F, Peng J. Effect of Substitution for Insertion of CO2 into Epoxides and Aziridines: An Ab Initio Study. Aust J Chem 2020. [DOI: 10.1071/ch19296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The insertion of CO2 into epoxides and aziridines has been studied using density functional theory (B3LYP) and ab initio (MP2) methods, and the effect of substitution for the two reactions are further explored. It is found that the reactivity of epoxides and aziridines are similar, and insertion of CO2 proceeds through a concerted mechanism. The substitutions of methyl and phenyl does not change the reaction mechanism, but the transition state for the substitution on the attacking position becomes loose with a lower free energy barrier. The substitutions of methyl and phenyl decrease the free energy barrier, with phenyl substitution having a greater affect. The results also show that the free energy barriers for the insertions of CO2 into aziridines are ~10kcalmol−1 lower than the corresponding reactions of CO2 with epoxides.
Collapse
|
11
|
Yang C, Chen Y, Xu P, Yang L, Zhang J, Sun J. Facile synthesis of zinc halide-based ionic liquid for efficient conversion of carbon dioxide to cyclic carbonates. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2019.110637] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Wu Y, Song X, Xu S, Yu T, Zhang J, Qi Q, Gao L, Zhang J, Xiao G. [(CH3)2NH2][M(COOH)3] (M=Mn, Co, Ni, Zn) MOFs as highly efficient catalysts for chemical fixation of CO2 and DFT studies. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.110485] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|