1
|
Zenebe FC, Taddesse AM, Sivasubramanian M, G. NB. Highly efficient CdS/CeO 2/Ag 3PO 4 nanocomposite as novel heterogenous catalyst for Knoevenagel condensation and acetylation reactions. Heliyon 2024; 10:e31798. [PMID: 38841498 PMCID: PMC11152677 DOI: 10.1016/j.heliyon.2024.e31798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
In light of environmental and economic concerns, the use of heterogeneous catalysts that can function under gentler reaction conditions has recently become popular. In this study by using the precipitation method, CdS/CeO2/Ag3PO4 ternary nanocomposites with varied molar proportions of CdS:CeO2/Ag3PO4 were produced. The catalysts' surface functional groups; morphology and crystal structures were examined using FTIR, SEM-EDX and XRD respectively. The catalytic efficiency of all synthesized nanomaterials was tested on a model Knoevenagel condensation reaction. For the best catalyst, selected from the screening, the optimization of reaction conditions such as the solvent, catalyst load, concentration of reagents such as malononitrile/acetic anhydride, and temperature. The ternary nanocomposite CdS/CeO2/Ag3PO4 (4:1) displayed higher catalytic activity (95.4 ± 3.2 %) than the rest of the nanomaterials prepared. Thus, the ternary nanocomposite CdS/CeO2/Ag3PO4 with 4:1 mol ratio with optimized reaction conditions was used to check the substrate scope of Knoevenagel condensation and acetylation reaction. The synthesized Knoevenagel condensation and acetylation reaction products were also characterized by proton and carbon NMR for their structure determination. The nanocomposite's reusability was carried out and only 7.5 ± 2 % decrement was witnessed after four runs and 23.3 % after the fifth run. and this indicates the potential application of the catalyst to organic reactions. Furthermore, we have proposed the possible catalytic mechanisms for both organic reactions.
Collapse
Affiliation(s)
| | - Abi M. Taddesse
- Department of Chemistry, Haramaya University, Haramaya, Ethiopia
| | | | - Neelaiah Babu G.
- Department of Chemistry, Haramaya University, Haramaya, Ethiopia
| |
Collapse
|
2
|
Sadjadi S, Abedian-Dehaghani N, Heydari A, Heravi MM. Chitosan bead containing metal-organic framework encapsulated heteropolyacid as an efficient catalyst for cascade condensation reaction. Sci Rep 2023; 13:2797. [PMID: 36797436 PMCID: PMC9935902 DOI: 10.1038/s41598-023-29548-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Using cyclodextrin and chitosan that are bio-based compounds, a novel bi-functional catalytic composite is designed, in which metal-organic framework encapsulated phosphomolybdic acid was incorporated in a dual chitosan-cyclodextrin nanosponge bead. The composite was characterized via XRD, TGA, ICP, BET, NH3-TPD, FTIR, FE-SEM/EDS, elemental mapping analysis and its catalytic activity was examined in alcohol oxidation and cascade alcohol oxidation-Knoevenagel condensation reaction. It was found that the designed catalyst that possess both acidic feature and redox potential could promote both reactions in aqueous media at 55 °C and various substrates with different electronic features could tolerate the aforementioned reactions to furnish the products in 75-95% yield. Furthermore, the catalyst could be readily recovered and recycled for five runs with slight loss of the catalytic activity. Notably, in this composite the synergism between the components led to high catalytic activity, which was superior to each component. In fact, the amino groups on the chitosan served as catalysts, while cyclodextrin nanosponge mainly acted as a phase transfer agent. Moreover, measurement of phosphomolybdic acid leaching showed that its incorporation in metal-organic framework and bead structure could suppress its leaching, which is considered a drawback for this compound. Other merits of this bi-functional catalyst were its simplicity, use of bio-based compounds and true catalysis, which was proved via hot filtration.
Collapse
Affiliation(s)
- Samahe Sadjadi
- Gas Conversion Department, Faculty of Petrochemicals, Iran Polymer and Petrochemical Institute, P.O. Box 14975-112, Tehran, Iran.
| | - Neda Abedian-Dehaghani
- grid.411354.60000 0001 0097 6984Department of Chemistry, School of Physics and Chemistry, Alzahra University, P.O. Box 1993891176, Vanak, Tehran, Iran
| | - Abolfazl Heydari
- grid.429924.00000 0001 0724 0339Polymer Institute of the Slovak Academy of Sciences, Dúbravská Cesta 9, 845 41 Bratislava, Slovakia
| | - Majid M. Heravi
- grid.411354.60000 0001 0097 6984Department of Chemistry, School of Physics and Chemistry, Alzahra University, P.O. Box 1993891176, Vanak, Tehran, Iran
| |
Collapse
|
3
|
de Abrantes PG, de Abrantes PG, Ferreira JMGDO, Vale JA. NaCl as an eco-friendly and efficient promoter for Knoevenagel condensation at room temperature. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2155836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | | | | | - Juliana Alves Vale
- Departamento de Química, Universidade Federal da Paraíba, João Pessoa, Brazil
| |
Collapse
|
4
|
Halawy SA, Osman AI, Mehta N, Abdelkader A, Vo DVN, Rooney DW. Adsorptive removal of some Cl-VOC's as dangerous environmental pollutants using feather-like γ-Al 2O 3 derived from aluminium waste with life cycle analysis. CHEMOSPHERE 2022; 295:133795. [PMID: 35124083 DOI: 10.1016/j.chemosphere.2022.133795] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/13/2022] [Accepted: 01/27/2022] [Indexed: 05/27/2023]
Abstract
Herein, we designed a cost-effective preparation method of nanocomposite γ-Al2O3 derived from Al-waste. The produced material has a feather-like morphology, and its adsorption of some chlorinated volatile organic compounds (Cl-VOC's) such as benzyl chloride, chloroform and carbon tetrachloride (C7H7Cl, CHCl3 and CCl4) was investigated due to their potential carcinogenic effect on humans. It showed a characteristic efficiency towards the adsorptive removal of these compounds over a long period, i.e., eight continuous weeks, at ambient temperature and atmospheric pressure. After 8-weeks, the adsorbed amounts of these compounds were determined as: 325.3 mg C7H7Cl, 247.6 mg CHCl3 and 253.3 mg CCl4 per g of γ-Al2O3, respectively. CCl4 was also found to be dissociatively adsorbed on the surface of γ-Al2O3, whereas CHCl3 and C7H7Cl were found to be associatively adsorbed. The prepared γ-Al2O3 has a relatively high surface area (i.e., 192.2 m2. g-1) and mesoporosity with different pore diameters in the range of 25-47 Å. Furthermore, environmental impacts of the nanocomposite γ-Al2O3 preparation were evaluated using life cycle assessment. For prepartion of adsorbent utilising 1 kg of scrap aluminium wire, it was observed that potential energy demand was 288 MJ, climate change potential was 19 kg CO2 equivalent, acidification potential was 0.115 kg SO2 equivalent and eutrophication potential was 0.018 kg PO43- equivalent.
Collapse
Affiliation(s)
- Samih A Halawy
- Nanocomposite Catalysts Lab., Chemistry Department, Faculty of Science at Qena, South Valley University, Qena, 83523, Egypt.
| | - Ahmed I Osman
- Nanocomposite Catalysts Lab., Chemistry Department, Faculty of Science at Qena, South Valley University, Qena, 83523, Egypt; School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Belfast BT9 5AG, Northern Ireland, UK.
| | - Neha Mehta
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Belfast BT9 5AG, Northern Ireland, UK; The Centre for Advanced Sustainable Energy, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, Northern Ireland, UK
| | - Adel Abdelkader
- Nanocomposite Catalysts Lab., Chemistry Department, Faculty of Science at Qena, South Valley University, Qena, 83523, Egypt
| | - Dai-Viet N Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, 755414, Viet Nam; College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - David W Rooney
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Belfast BT9 5AG, Northern Ireland, UK
| |
Collapse
|
5
|
Deng L, Han S, Zhou D, Li Y, Shen W. Morphology dependent effect of γ-Al2O3 for ethanol dehydration: nanorods and nanosheets. CrystEngComm 2022. [DOI: 10.1039/d1ce01316e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
γ-Al2O3 nanorods gave the improved selectivity of C2H4 in ethanol dehydration due to the selective exposure of {100} facets.
Collapse
Affiliation(s)
- Li Deng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shaobo Han
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Di Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Wenjie Shen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| |
Collapse
|
6
|
Seah GL, Wang L, Tan LF, Tipjanrawee C, Sasangka WA, Usadi AK, McConnachie JM, Tan KW. Ordered Mesoporous Alumina with Tunable Morphologies and Pore Sizes for CO 2 Capture and Dye Separation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36117-36129. [PMID: 34288649 DOI: 10.1021/acsami.1c06151] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We describe a versatile and scalable strategy toward long-range and periodically ordered mesoporous alumina (Al2O3) structures by evaporation-induced self-assembly of a structure-directing ABA triblock copolymer (F127) mixed with aluminum tri-sec-butoxide-derived sol additive. We found that the separate preparation of the alkoxide sol-gel reaction before mixing with the block copolymer enabled access to a relatively unexplored parameter space of copolymer-to-additive composition, acid-to-metal molar ratio, and solvent, yielding ordered mesophases of two-dimensional (2D) lamellar, hexagonal cylinder, and 3D cage-like cubic lattices, as well as multiscale hierarchical ordered structures from spinodal decomposition-induced macro- and mesophase separation. Thermal annealing in air at 900 °C yielded well-ordered mesoporous crystalline γ-Al2O3 structures and hierarchically porous γ-Al2O3 with 3D interconnected macroscale and ordered mesoscale pore networks. The ordered Al2O3 structures exhibited tunable pore sizes in three different length scales, <2 nm (micropore), 2-11 nm (mesopore), and 1-5 μm (macropore), as well as high surface areas and pore volumes of up to 305 m2/g and 0.33 cm3/g, respectively. Moreover, the resultant mesoporous Al2O3 demonstrated enhanced adsorption capacities of carbon dioxide and Congo red dye. Such hierarchically ordered mesoporous Al2O3 are well-suited for green environmental solutions and urban sustainability applications, for example, high-temperature solid adsorbents and catalyst supports for carbon dioxide sequestration, fuel cells, and wastewater separation treatments.
Collapse
Affiliation(s)
- Geok Leng Seah
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| | - Leyan Wang
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| | - Li Fang Tan
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| | - Chanikarn Tipjanrawee
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| | - Wardhana A Sasangka
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| | - Adam K Usadi
- ExxonMobil Research and Engineering Company, Annandale, New Jersey 08801, United States
| | | | - Kwan W Tan
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| |
Collapse
|
7
|
Qiu J, Meng F, Wang M, Huang J, Wang C, Li X, Yang G, Hua Z, Chen T. Recyclable DMAP-Functionalized polymeric nanoreactors for highly efficient acylation of alcohols in aqueous systems. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
8
|
Xie X, Cheng H. Adsorption and desorption of phenylarsonic acid compounds on metal oxide and hydroxide, and clay minerals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143765. [PMID: 33229094 DOI: 10.1016/j.scitotenv.2020.143765] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
Adsorption and desorption of p-arsanilic acid (p-ASA) and roxarsone (ROX) on six soil minerals, including hematite (α-Fe2O3), goethite (α-FeOOH), ferrihydrite (Fe(OH)3), aluminum oxide (α-Al2O3), manganese oxide (γ-MnO2), and kaolinite, were studied, and the impact of solution matrices on their adsorption was systematically evaluated. Adsorption of p-ASA/ROX on the metal (hydro)oxide and clay minerals occurred quickly (mostly within 2 h), and could be well described by the pseudo second-order kinetic model. The apparent maximum adsorption capacities of α-Fe2O3, α-FeOOH, Fe(OH)3, α-Al2O3, γ-MnO2, and kaolinite (at an initial pH of 7.0) for p-ASA were 1.7, 0.9, 2.5, 0.08, 1.1, and 0.02 μmol/m2, while those for ROX were 1.6, 0.7, 2.4, 0.1, 0.5, and 0.05 μmol/m2, respectively. Besides adsorbing p-ASA/ROX, γ-MnO2 also caused their oxidation. Experimental results suggest that formation of inner-sphere complexes through the arsonic acid group is the primary mechanism for adsorption of p-ASA/ROX on iron (hydro)oxides and γ-MnO2, while outer-sphere complexation plays a critical role in their adsorption on α-Al2O3 and kaolinite. Adsorption of p-ASA/ROX on the metal (hydro)oxide and clay minerals was affected by solution pH, co-existing metal ions (Ca2+, Mg2+, Al3+, Cu2+, Fe3+, and Zn2+), oxyanions (H2PO4-, HCO3-, and SO42-), and humic acid. The solid-to-liquid partition coefficients of p-ASA during the desorption from α-Fe2O3, α-FeOOH, Fe(OH)3, α-Al2O3, γ-MnO2, and kaolinite were 0.47, 2.69, 4.38, 0.03, 30.4, and 0.1 L/g, while those of ROX were 0.28, 1.68, 3.48, 0.02, 4.0, and 0.02 L/g, respectively. Agricultural soils with lower contents of organic carbon exhibited higher adsorption capacities towards p-ASA/ROX, which indicates that soil minerals play a key role in the adsorption of phenylarsonic acid compounds while organic matter could have strong inhibitory effect. These findings could help better understand and predict the transport and fate of p-ASA/ROX in surface soils with low contents of organic matter.
Collapse
Affiliation(s)
- Xiande Xie
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
9
|
Activated charcoal grafted with phenyl imidazole groups for Knœvenagel condensation of furfural with malononitrile. CATAL COMMUN 2020. [DOI: 10.1016/j.catcom.2020.106151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
10
|
MgO insertion endowed strong basicity in mesoporous alumina framework and improved CO2 sorption capacity. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Wakabayashi R, Tomita A, Kimura T. Understanding of NOx storage property of impregnated Ba species after crystallization of mesoporous alumina powders. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122791. [PMID: 32768855 DOI: 10.1016/j.jhazmat.2020.122791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 06/11/2023]
Abstract
The regulation of automobile exhaust gas, especially that concerning hazardous nitrogen oxide (called as NOx) becomes stricter year-by-year, which should be urgently corresponded for cleaning the NOx containing emission. According to surface affinity of γ-alumina to metal catalysts and its thermal stability, crystalline γ-alumina has been frequently utilized as catalyst supports showing relatively high specific surface area. From the viewpoint, we consider that highly porous alumina powders prepared using amphiphilic organic molecules are potential as such a catalyst support for improving NOx removing property. In this study, we report surface property of the mesoporous alumina powders against NOx molecules after crystallizing to its γ-phase and NOx storage property after impregnation of barium (Ba) acetate in the mesopores. Adsorption of NO with O2 on mesoporous γ-alumina powders without Ba species were more likely to be bridging bidentate than chelating bidentate nitrates (NO3-) with comparing to commercially available γ-alumina powders. After impregnating the Ba species, admitted NO molecules were oxidized with enough O2 and stored very strongly as ionic nitrate (NO3-) onto the Ba species even after heating at 500 °C. This preliminary study is helpful for designing mesoporous deNOx catalysts combined with unique storage/adsorption property.
Collapse
Affiliation(s)
- Ryutaro Wakabayashi
- Innovative Functional Materials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Shimoshidami, Moriyama-ku, Nagoya, 463-8560, Japan
| | - Atsuko Tomita
- Innovative Functional Materials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Shimoshidami, Moriyama-ku, Nagoya, 463-8560, Japan
| | - Tatsuo Kimura
- Innovative Functional Materials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Shimoshidami, Moriyama-ku, Nagoya, 463-8560, Japan.
| |
Collapse
|
12
|
Preparation and Application of Ordered Mesoporous Metal Oxide Catalytic Materials. CATALYSIS SURVEYS FROM ASIA 2019. [DOI: 10.1007/s10563-019-09288-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|