1
|
Rong Z, Shen W, Fang Y. Alkaline earth modified activated carbon supported Cu catalysts with enhanced selectivity in the hydrogenation of dimethyl oxalate to methyl glycolate. RSC Adv 2024; 14:11849-11861. [PMID: 38617573 PMCID: PMC11009838 DOI: 10.1039/d4ra01049c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/06/2024] [Indexed: 04/16/2024] Open
Abstract
In this work, the effect of alkaline earth metal modification on the catalytic performance of activated carbon supported Cu was investigated. The experimental results showed that the introduction of Ca and Sr improved the selectivity of methyl glycolate (MG) during hydrogenation of dimethyl oxalate (DMO) in gas phase. The optimal loading amount of Ca was 0.1 wt%, and under the optimal conditions (temperature 240 °C, pressure 2 MPa, hydrogen-ester ratio of 80, feedstock 15% DMO methanol solution, and WLHSVDMO = 0.9 h-1) the selectivity of MG was as high as 94%, and the conversion of DMO was 97%. The optimal loading of Sr was 0.2 wt% with MG selectivity up to 89% and DMO conversion of 98%. The results of catalyst characterization showed that both Ca and Sr modifications were beneficial to further reduce the particle size of Cu, improve the dispersion of Cu, increase the basicity of the catalyst, and improve the stable presence of Cu+ during the reaction process. Cu+ was beneficial to the stabilization of the MG species, in which Cu+ accounted for more in the Ca-modified catalysts Cu+/(Cu+ + Cu0) = 0.65, and in the Sr-modified ones Cu+/(Cu+ + Cu0) = 0.51. Therefore, both Ca and Sr modified catalysts showed improvement in the selectivity of MG.
Collapse
Affiliation(s)
- Zanji Rong
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology Shanghai China +86-21-64252076 +86-21-64252829
| | - Weihua Shen
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology Shanghai China +86-21-64252076 +86-21-64252829
| | - Yunjin Fang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology Shanghai China +86-21-64252076 +86-21-64252829
| |
Collapse
|
2
|
β-Cyclodextrin promoted the formation of copper phyllosilicate on Cu-SiO2 microspheres catalysts to enhance the low-temperature hydrogenation of dimethyl oxalate. J Catal 2022. [DOI: 10.1016/j.jcat.2022.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
3
|
Lyu S, Zhang Y, Li Z, Liu X, Tian Z, Liu C, Li J, Wang L. Electronic Metal-Support Interactions Between Cu xO and ZnO for Cu xO/ZnO Catalysts With Enhanced CO Oxidation Activity. Front Chem 2022; 10:912550. [PMID: 35646814 PMCID: PMC9136224 DOI: 10.3389/fchem.2022.912550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Metal-support interaction has been one of the main topics of research on supported catalysts all the time. However, many other factors including the particle size, shape and chemical composition can have significant influences on the catalytic performance when considering the role of metal-support interaction. Herein, we have designed a series of CuxO/ZnO catalysts as examples to quantitatively investigate how the metal-support interaction influences the catalytic performance. The electronic metal-support interactions between CuxO and ZnO were regulated successfully without altering the structure of CuxO/ZnO catalyst. Due to the lower work function of ZnO, electrons would transfer from ZnO to CuO, which is favorable for the formation of higher active Cu species. Combined experimental and theoretical calculations revealed that electron-rich interface result from interaction was favorable for the adsorption of oxygen and CO oxidation reaction. Such strategy represents a new direction to boost the catalytic activity of supported catalysts in various applications.
Collapse
Affiliation(s)
- Shuai Lyu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, China
| | - Yuhua Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, China
| | - Zhe Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, China
| | - Xinyue Liu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, China
| | - Zhenfang Tian
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang, China
| | - Chengchao Liu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, China
| | - Jinlin Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, China
| | - Li Wang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, China
| |
Collapse
|
4
|
Xue H, Qin S, Wang X, Zhang C, Wang D, Dai B. Influence of Pd‐Doping on The Efficiency of In
2
O
3
/ZrO
2
Catalysts Used for Hydrogenating Dimethyl Oxalate to Ethanol. ChemistrySelect 2022. [DOI: 10.1002/slct.202103297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Haodong Xue
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 P.R. China
| | - Siqian Qin
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 P.R. China
| | - Xue Wang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 P.R. China
| | - Chuancai Zhang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 P.R. China
| | - Denghao Wang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 P.R. China
| | - Bin Dai
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 P.R. China
| |
Collapse
|
5
|
Xu Y, Huang H, Kong L, Ma X. Effect of calcination temperature on the Cu–ZrO 2 interfacial structure and its catalytic behavior in the hydrogenation of dimethyl oxalate. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01210c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The 5 wt% Cu/ZrO2 catalysts showed satisfying performance in DMO hydrogenation to EG via simply tuning the calcination temperature. The synergistic effect of the Cu0–Cu+–ZrO2 interface in activating H2 molecules and carbonyl bonds was elucidated.
Collapse
Affiliation(s)
- Yuxi Xu
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Huijiang Huang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Lingxin Kong
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xinbin Ma
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
6
|
Han B, Dong M, Zhang R, Ling L, Fan M, Liu P, Wang B. CO oxidative coupling to dimethyl oxalate over Pd monolayer supported on SiC substrate: insight into the effects of different exposed terminals. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Cai X, Ke Y, Wang B, Zeng Y, Chen L, Li Y, Bai G, Yan X. Efficient catalytic amination of diols to diamines over Cu/ZnO/γ-Al2O3. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Huang H, Wang B, Wang Y, Zhao Y, Wang S, Ma X. Partial hydrogenation of dimethyl oxalate on Cu/SiO2 catalyst modified by sodium silicate. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.08.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Coşkuner Filiz B. The role of catalyst support on activity of copper oxide nanoparticles for reduction of 4-nitrophenol. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.07.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
10
|
Hierarchically nanostructured bimetallic NiCo/MgxNiyO catalyst with enhanced activity for phenol hydrogenation. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110846] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Ye RP, Lin L, Wang LC, Ding D, Zhou Z, Pan P, Xu Z, Liu J, Adidharma H, Radosz M, Fan M, Yao YG. Perspectives on the Active Sites and Catalyst Design for the Hydrogenation of Dimethyl Oxalate. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05477] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Run-Ping Ye
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People’s Republic of China
- Departments of Chemical & Petroleum Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People’s Republic of China
| | - Ling Lin
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People’s Republic of China
| | - Lu-Cun Wang
- Idaho National Laboratory, Idaho Falls, Idaho 83415, United States
| | - Dong Ding
- Idaho National Laboratory, Idaho Falls, Idaho 83415, United States
| | - Zhangfeng Zhou
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People’s Republic of China
| | - Pengbin Pan
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People’s Republic of China
| | - Zhenghe Xu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People’s Republic of China
| | - Jian Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People’s Republic of China
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, and Advanced Technology Institute, University of Surrey, Guilford, Surrey GU2 7XH, U.K
| | - Hertanto Adidharma
- Departments of Chemical & Petroleum Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Maciej Radosz
- Departments of Chemical & Petroleum Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Maohong Fan
- Departments of Chemical & Petroleum Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
- School of Energy Resources, University of Wyoming, Laramie, Wyoming 82071, United States
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Mason
Building, 790 Atlantic Drive, Atlanta, Georgia 30332, United States
| | - Yuan-Gen Yao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People’s Republic of China
| |
Collapse
|
12
|
Wang X, Chen M, Chen X, Lin R, Zhu H, Huang C, Yang W, Tan Y, Wang S, Du Z, Ding Y. Constructing copper-zinc interface for selective hydrogenation of dimethyl oxalate. J Catal 2020. [DOI: 10.1016/j.jcat.2020.01.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Du Z, Chen M, Wang X, Chen X, Mou X, Tan Y, Yang W, Huang C, Zhu H, Lin R, Ding Y. Bifunctional rhenium–copper nanostructures for intensified and stable ethanol synthesis via hydrogenation of dimethyl oxalate. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00579g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Small copper nanoparticles decorated with isolated and clustered oxophilic rhenium species are designed for intensified ethanol production through hydrogenation of dimethyl oxalate with unprecedented stability performance.
Collapse
|
14
|
Rizvi SAM, Iqbal N, Haider MD, Noor T, Anwar R, Hanif S. Synthesis and Characterization of Cu-MOF Derived Cu@AC Electrocatalyst for Oxygen Reduction Reaction in PEMFC. Catal Letters 2019. [DOI: 10.1007/s10562-019-03024-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Hu X, Zhao C, Guan Q, Hu X, Li W, Chen J. Selective hydrogenation of CO2 over a Ce promoted Cu-based catalyst confined by SBA-15. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00397e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly efficient generation of methanol and CO relying on the synergistic effect of Cu, ZnO, and CeOx dispersed in SBA-15.
Collapse
Affiliation(s)
- Xiaosong Hu
- College of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
- Nankai University
- Tianjin 300071
| | - Chaoyue Zhao
- College of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
- Nankai University
- Tianjin 300071
| | - Qingxin Guan
- College of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
- Nankai University
- Tianjin 300071
| | - Xin Hu
- College of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
- Nankai University
- Tianjin 300071
| | - Wei Li
- College of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
- Nankai University
- Tianjin 300071
| | - Jun Chen
- College of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
- Nankai University
- Tianjin 300071
| |
Collapse
|