1
|
Liu G, Yang G, Peng X, Wu J, Tsubaki N. Recent advances in the routes and catalysts for ethanol synthesis from syngas. Chem Soc Rev 2022; 51:5606-5659. [PMID: 35705080 DOI: 10.1039/d0cs01003k] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ethanol, as one of the important bulk chemicals, is widely used in modern society. It can be produced by fermentation of sugar, petroleum refining, or conversion of syngas (CO/H2). Among these approaches, conversion of syngas to ethanol (STE) is the most environmentally friendly and economical process. Although considerable progress has been made in STE conversion, control of CO activation and C-C growth remains a great challenge. This review highlights recent advances in the routes and catalysts employed in STE technology. The catalyst designs and pathway designs are summarized and analysed for the direct and indirect STE routes, respectively. In the direct STE routes (i.e., one-step synthesis of ethanol from syngas), modified catalysts of methanol synthesis, modified catalysts of Fischer-Tropsch synthesis, Mo-based catalysts, noble metal catalysts and multifunctional catalysts are systematically reviewed based on their catalyst designs. Further, in the indirect STE routes (i.e., multi-step processes for ethanol synthesis from syngas via methanol/dimethyl ether as intermediates), carbonylation of methanol/dimethyl ether followed by hydrogenation, and coupling of methanol with CO to form dimethyl oxalate followed by hydrogenation, are outlined according to their pathway designs. The goal of this review is to provide a comprehensive perspective on STE technology and inspire the invention of new catalysts and pathway designs in the near future.
Collapse
Affiliation(s)
- Guangbo Liu
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan. .,Key laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China.
| | - Guohui Yang
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan.
| | - Xiaobo Peng
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan. .,National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou 350002, Fujian, China
| | - Jinhu Wu
- Key laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China.
| | - Noritatsu Tsubaki
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan.
| |
Collapse
|
2
|
Zhao J, Yin LF, Ling LX, Zhang RG, Fan MH, Wang BJ. A predicted new catalyst to replace noble metal Pd for CO oxidative coupling to DMO. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01631h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction mechanisms of CO oxidative coupling to dimethyl oxalate (DMO) on different β-Mo2C(001) based catalysts have been studied by the density functional theory (DFT) method.
Collapse
Affiliation(s)
- Juan Zhao
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China
| | - Li-Fei Yin
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China
| | - Li-Xia Ling
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China
- Department of Chemical and Petroleum Engineering, University of Wyoming, 1000 E University Ave, Laramie, WY 82071, USA
| | - Ri-Guang Zhang
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China
| | - Mao-Hong Fan
- Department of Chemical and Petroleum Engineering, University of Wyoming, 1000 E University Ave, Laramie, WY 82071, USA
| | - Bao-Jun Wang
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China
| |
Collapse
|
3
|
Yang L, Pan Z, Wang D, Wang S, Wang X, Ma H, Liu H, Wang C, Qu W, Tian Z. Highly Effective Pd/MgO/γ-Al 2O 3 Catalysts for CO Oxidative Coupling to Dimethyl Oxalate: The Effect of MgO Coating on γ-Al 2O 3. ACS APPLIED MATERIALS & INTERFACES 2021; 13:28064-28071. [PMID: 34105350 DOI: 10.1021/acsami.1c04051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The support of MgO/γ-Al2O3 was initially prepared by a multiple impregnation method and Pd was placed on the surface of the MgO/γ-Al2O3 support via incipient wetness impregnation. Pd/MgO/γ-Al2O3 (Pd/MAO) catalysts were systematically characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), CO2-temperature-programmed desorption (TPD), transmission electron microscopy (TEM), CO-Fourier transform infrared (CO-FTIR), and X-ray photoelectron spectroscopy (XPS) and tested in the CO oxidative coupling to dimethyl oxalate (DMO) reaction. Compared to Pd/γ-Al2O3, the catalytic activities of the Pd/MAO catalysts improved significantly. The Pd/MAO catalyst with a 30% mass ratio of Mg to γ-Al2O3 delivers 3 times higher STY of DMO than that of Pd/γ-Al2O3. It has been demonstrated that MgO covered γ-Al2O3 layer-by-layer forming MAO supports, which can increase surface basicity and the interaction between Pd particles and the MAO supports. Moreover, the relationship between metal and support interaction and catalytic performance was discussed.
Collapse
Affiliation(s)
- Lin Yang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhendong Pan
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Donge Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shuaiqi Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoping Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huaijun Ma
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hao Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Congxin Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wei Qu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhijian Tian
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
4
|
Qu Y, Wang Y, Li J, Xu Q, Liang X, Jiang A. Insights into the Pd nanocatalysts directed by morphology effect for CO and methyl nitrite coupling to dimethyl oxalate. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|