1
|
Ali S, Ismail PM, Khan M, Dang A, Ali S, Zada A, Raziq F, Khan I, Khan MS, Ateeq M, Khan W, Bakhtiar SH, Ali H, Wu X, Shah MIA, Vinu A, Yi J, Xia P, Qiao L. Charge transfer in TiO 2-based photocatalysis: fundamental mechanisms to material strategies. NANOSCALE 2024; 16:4352-4377. [PMID: 38275275 DOI: 10.1039/d3nr04534j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Semiconductor-based photocatalysis has attracted significant interest due to its capacity to directly exploit solar energy and generate solar fuels, including water splitting, CO2 reduction, pollutant degradation, and bacterial inactivation. However, achieving the maximum efficiency in photocatalytic processes remains a challenge owing to the speedy recombination of electron-hole pairs and the limited use of light. Therefore, significant endeavours have been devoted to addressing these issues. Specifically, well-designed heterojunction photocatalysts have been demonstrated to exhibit enhanced photocatalytic activity through the physical distancing of electron-hole pairs generated during the photocatalytic process. In this review, we provide a systematic discussion ranging from fundamental mechanisms to material strategies, focusing on TiO2-based heterojunction photocatalysts. Current efforts are focused on developing heterojunction photocatalysts based on TiO2 for a variety of photocatalytic applications, and these projects are explained and assessed. Finally, we offer a concise summary of the main insights and challenges in the utilization of TiO2-based heterojunction photocatalysts for photocatalysis. We expect that this review will serve as a valuable resource to improve the efficiency of TiO2-based heterojunctions for energy generation and environmental remediation.
Collapse
Affiliation(s)
- Sharafat Ali
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology, Huzhou 313001, China
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Pir Muhammad Ismail
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology, Huzhou 313001, China
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Muhammad Khan
- Shannxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Alei Dang
- Shannxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Sajjad Ali
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology, Huzhou 313001, China
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Amir Zada
- Department of Chemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, 23200, Pakistan.
| | - Fazal Raziq
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Imran Khan
- School of Physics and Electronics, Hunan Key Laboratory for Super-microstructure and Ultrafast Process, Central South University, Changsha, 410083, People's Republic of China
| | - Muhammad Shakeel Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, 23200, Pakistan.
| | - Muhammad Ateeq
- Department of Chemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, 23200, Pakistan.
| | - Waliullah Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, 23200, Pakistan.
| | - Syedul Hasnain Bakhtiar
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Engineering Research Center for Functional Ceramics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Haider Ali
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Xiaoqiang Wu
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Muhammad Ishaq Ali Shah
- Department of Chemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, 23200, Pakistan.
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Jiabao Yi
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Pengfei Xia
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology, Huzhou 313001, China
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Liang Qiao
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology, Huzhou 313001, China
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| |
Collapse
|
2
|
Zhong W, Fu W, Sun S, Wang L, Liu H, Wang J. Characterization of TiO 2 and an as-prepared TiO 2/SiO 2 composite and their photocatalytic performance for the reduction of low-concentration N-NO 3- in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:40585-40598. [PMID: 35084675 DOI: 10.1007/s11356-022-18793-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Excessive N-NO3- water pollution has become a widespread and serious problem that threatens human and ecosystem health. Here, a TiO2/SiO2 composite photocatalyst was prepared via the sol-gel/hydrothermal method. TiO2 and TiO2/SiO2 were characterized by X-ray diffraction (XRD), UV-Vis differential reflectance spectroscopy (DRS), Fourier infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). Afterward, the photocatalytic performance of TiO2 and TiO2/SiO2 to reduce low nitrate concentrations (30 mgN L-1) under UV light was evaluated and the effects of different factors on this process were investigated, after which the reaction conditions were optimized. Removal rates of up to 99.93% were achieved at a hole scavenger (formic acid) concentration of 0.6 mL L-1, a CO2 flow rate of 0.1 m3 h-1, and a TiO2 concentration of 0.9 g L-1. In contrast, TiO2/SiO2 at a 1.4 g L-1 concentration and a TiO2 load rate of 40% achieved a removal rate of 83.48%, but with more than 98% of nitrogen generation rate. NO2- and NH4+ were the minor products, whereas N2 was the main product.
Collapse
Affiliation(s)
- Wanzhen Zhong
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266000, China
| | - Weizhang Fu
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| | - Shujuan Sun
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| | - Lingsheng Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Huaihao Liu
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Junzhi Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266000, China
| |
Collapse
|
7
|
Kumar A, Kumar A, Krishnan V. Perovskite Oxide Based Materials for Energy and Environment-Oriented Photocatalysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02947] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Ashish Kumar
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Ajay Kumar
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Venkata Krishnan
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| |
Collapse
|
8
|
Perović K, dela Rosa FM, Kovačić M, Kušić H, Štangar UL, Fresno F, Dionysiou DD, Loncaric Bozic A. Recent Achievements in Development of TiO 2-Based Composite Photocatalytic Materials for Solar Driven Water Purification and Water Splitting. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1338. [PMID: 32183457 PMCID: PMC7142427 DOI: 10.3390/ma13061338] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 01/20/2023]
Abstract
Clean water and the increased use of renewable energy are considered to be two of the main goals in the effort to achieve a sustainable living environment. The fulfillment of these goals may include the use of solar-driven photocatalytic processes that are found to be quite effective in water purification, as well as hydrogen generation. H2 production by water splitting and photocatalytic degradation of organic pollutants in water both rely on the formation of electron/hole (e-/h+) pairs at a semiconducting material upon its excitation by light with sufficient photon energy. Most of the photocatalytic studies involve the use of TiO2 and well-suited model compounds, either as sacrificial agents or pollutants. However, the wider application of this technology requires the harvesting of a broader spectrum of solar irradiation and the suppression of the recombination of photogenerated charge carriers. These limitations can be overcome by the use of different strategies, among which the focus is put on the creation of heterojunctions with another narrow bandgap semiconductor, which can provide high response in the visible light region. In this review paper, we report the most recent advances in the application of TiO2 based heterojunction (semiconductor-semiconductor) composites for photocatalytic water treatment and water splitting. This review article is subdivided into two major parts, namely Photocatalytic water treatment and Photocatalytic water splitting, to give a thorough examination of all achieved progress. The first part provides an overview on photocatalytic degradation mechanism principles, followed by the most recent applications for photocatalytic degradation and mineralization of contaminants of emerging concern (CEC), such as pharmaceuticals and pesticides with a critical insight into removal mechanism, while the second part focuses on fabrication of TiO2-based heterojunctions with carbon-based materials, transition metal oxides, transition metal chalcogenides, and multiple composites that were made of three or more semiconductor materials for photocatalytic water splitting.
Collapse
Affiliation(s)
- Klara Perović
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulicev trg 19, HR–10000 Zagreb, Croatia; (K.P.); (F.M.d.R.); (M.K.); (A.L.B.)
| | - Francis M. dela Rosa
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulicev trg 19, HR–10000 Zagreb, Croatia; (K.P.); (F.M.d.R.); (M.K.); (A.L.B.)
| | - Marin Kovačić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulicev trg 19, HR–10000 Zagreb, Croatia; (K.P.); (F.M.d.R.); (M.K.); (A.L.B.)
| | - Hrvoje Kušić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulicev trg 19, HR–10000 Zagreb, Croatia; (K.P.); (F.M.d.R.); (M.K.); (A.L.B.)
| | - Urška Lavrenčič Štangar
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Fernando Fresno
- Photoactivated Processes Unit, IMDEA Energy, Móstoles, 28935 Madrid, Spain;
| | - Dionysios D. Dionysiou
- Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH 45221–0012, USA;
| | - Ana Loncaric Bozic
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulicev trg 19, HR–10000 Zagreb, Croatia; (K.P.); (F.M.d.R.); (M.K.); (A.L.B.)
| |
Collapse
|