1
|
Mateus M, Rycek L. Silver Complex Bearing N-Heterocyclic Carbene Bidentate Chelating Ligand as an Efficient Catalyst in Solvent-Free KA 2 Coupling. Chempluschem 2024; 89:e202400365. [PMID: 38958030 DOI: 10.1002/cplu.202400365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
We report a synthesis of silver complexes bearing chelating bidentate N-heterocyclic carbene, with various substitutions at the terminal positions of the imidazole moiety of the NHC units. The long aliphatic substituents proved to be beneficial in terms of the synthetic efficiency of the complexes, compared to previously reported methyl substitution. The complexes demonstrated excellent suitability for the KA2 coupling reaction, providing quaternary carbon-containing propargylic amines in yields up to 95 %, under solvent-free conditions. The method showed high tolerance for a wide range of substrates, including naturally occurring ketones, underscoring its practicality. To our knowledge, this represents the first use of a well-defined silver species in KA2 coupling, marking an advancement in the field.
Collapse
Affiliation(s)
- Miguel Mateus
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00, Prague, Czech Republic
| | - Lukas Rycek
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00, Prague, Czech Republic
| |
Collapse
|
2
|
Galdi G, Costabile C. Tuning the Steric and Electronic Properties of Hemilabile NHC ligands for Gold(I/III) Catalyzed Oxyarylation of Ethylene: A Computational Study. Chemistry 2024:e202402774. [PMID: 39282892 DOI: 10.1002/chem.202402774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Indexed: 11/06/2024]
Abstract
Mechanistic studies on 1,2-oxyarylation of ethylene promoted by gold catalysts bearing hemilabile N-Heterocyclic Carbene (NHC^X) ligands were conducted by DFT calculations, exploring the whole catalytic cycle. After highest energy transition state (TS) barriers were located for NHC^N gold catalyst, and experimental results with different iodoarenes and alcohols rationalized, the study was extended to modified NHC^X catalysts, to observe how electronic and steric effects could affect the rate determining step TS. Electronic effects were investigated on NHC^X (X=H, N, O, P, and S), whereas steric effects emerged when comparing catalysts with different N-R groups (R=Dipp, Mes, tBu and Me). Finally, we suggest a different catalyst design based on N-aryl N-o-donor-aryl NHC, with different donors and NHC backbones to search for better performing systems.
Collapse
Affiliation(s)
- Gaetano Galdi
- Department of Chemistry and Biology "A.Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| | - Chiara Costabile
- Department of Chemistry and Biology "A.Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| |
Collapse
|
3
|
Mariconda A, Iacopetta D, Sirignano M, Ceramella J, D'Amato A, Marra M, Pellegrino M, Sinicropi MS, Aquaro S, Longo P. Silver and Gold Complexes with NHC-Ligands Derived from Caffeine: Catalytic and Pharmacological Activity. Int J Mol Sci 2024; 25:2599. [PMID: 38473851 DOI: 10.3390/ijms25052599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
N-heterocyclic carbene (NHC) silver(I) and gold(I) complexes have found different applications in various research fields, as in medicinal chemistry for their antiproliferative, anticancer, and antibacterial activity, and in chemistry as innovative and effective catalysts. The possibility of modulating the physicochemical properties, by acting on their ligands and substituents, makes them versatile tools for the development of novel metal-based compounds, mostly as anticancer compounds. As it is known, chemotherapy is commonly adopted for the clinical treatment of different cancers, even though its efficacy is hampered by several factors. Thus, the development of more effective and less toxic drugs is still an urgent need. Herein, we reported the synthesis and characterization of new silver(I) and gold(I) complexes stabilized by caffeine-derived NHC ligands, together with their biological and catalytic activities. Our data highlight the interesting properties of this series as effective catalysts in A3-coupling and hydroamination reactions and as promising anticancer, anti-inflammatory, and antioxidant agents. The ability of these complexes in regulating different pathological aspects, and often co-promoting causes, of cancer makes them ideal leads to be further structurally functionalized and investigated.
Collapse
Affiliation(s)
- Annaluisa Mariconda
- Department of Science, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy
| | - Marco Sirignano
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy
| | - Assunta D'Amato
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Maria Marra
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy
| | - Michele Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy
| | - Pasquale Longo
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| |
Collapse
|
4
|
Sirignano M, D’Amato A, Costabile C, Mariconda A, Crispini A, Scarpelli F, Longo P. Hydroamination of alkynes catalyzed by NHC-Gold(I) complexes: the non-monotonic effect of substituted arylamines on the catalyst activity. Front Chem 2023; 11:1260726. [PMID: 38124702 PMCID: PMC10731675 DOI: 10.3389/fchem.2023.1260726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/24/2023] [Indexed: 12/23/2023] Open
Abstract
Imines are valuable key compounds for synthesizing several nitrogen-containing molecules used in biological and industrial fields. They have been obtained, as highly regioselective Markovnikov products, by reacting several alkynes with arylamines in the presence of three new N-Heterocyclic carbene gold(I) complexes (3b, 4b, and 6b) together with the known 1-2b and 7b gold complexes as well as silver complexes 1-2a. Gold(I) complexes were investigated by means of NMR, mass spectroscopy, elemental analysis, and X-ray crystallographic studies. Accurate screening of co-catalysts and solvents led to identifying the best reaction conditions and the most active catalyst (2b) in the model hydroamination of phenylacetylene with aniline. Complex 2b was then tested in the hydroamination of alkynes with a wide variety of arylamines yielding a lower percentage of product when arylamines with both electron-withdrawing and electron-donating substituents were involved. Computational studies on the rate-determining step of hydroamination were conducted to shed light on the significantly different yields observed when reacting arylamines with different substituents.
Collapse
Affiliation(s)
- Marco Sirignano
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Fisciano, Italy
| | - Assunta D’Amato
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Fisciano, Italy
| | - Chiara Costabile
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Fisciano, Italy
| | | | - Alessandra Crispini
- Department of Chemistry and Chemical Technologies, University of Calabria, Arcavacata Di Rende, Italy
| | - Francesca Scarpelli
- Department of Chemistry and Chemical Technologies, University of Calabria, Arcavacata Di Rende, Italy
| | - Pasquale Longo
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Fisciano, Italy
| |
Collapse
|
5
|
Iacopetta D, Costabile C, La Chimia M, Mariconda A, Ceramella J, Scumaci D, Catalano A, Rosano C, Cuda G, Sinicropi MS, Longo P. NHC-Ag(I) and NHC-Au(I) Complexes with N-Boc-Protected α-Amino Acidate Counterions Powerfully Affect the Growth of MDA-MB-231 Cells. ACS Med Chem Lett 2023; 14:1567-1575. [PMID: 37974945 PMCID: PMC10641922 DOI: 10.1021/acsmedchemlett.3c00360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/05/2023] [Indexed: 11/19/2023] Open
Abstract
N-Heterocyclic carbene (NHC) metal complexes are attracting scientists' interest as an alluring class of metallodrugs. Indeed, the versatile functionalization of NHC ligands makes them optimal scaffolds to be developed in medicinal chemistry. Besides, amino acids are great biological ligands for metals, such as silver and gold, even though their use is still under-investigated. Aiming to shed light on the anticancer properties of this kind of complex, we investigated a series of silver and gold complexes, stabilized by NHC ligands and bearing carboxylate salts of tert-butyloxycarbonyl (Boc)-N-protected glycine and l-phenylalanine as anionic ligands. The most active complexes, AuM1Gly and AuM1Phe, powerfully affect the growth of MDA-MB-231 breast cancer cells, with IC50 values in the low nanomolar range. Further studies demonstrated the blockade of the human topoisomerase I activity and actin polymerization reaction at 0.001 μM. These unique features make these complexes very interesting and worthy to be used for future in vivo studies.
Collapse
Affiliation(s)
- Domenico Iacopetta
- Department
of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Chiara Costabile
- Department
of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy
| | - Marina La Chimia
- Laboratory
of Proteomics, Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, S Venuta University Campus, 88100 Catanzaro, Italy
- Research
Center on Advanced Biochemistry and Molecular Biology, Magna Græcia University of Catanzaro, S Venuta University Campus, 88100 Catanzaro, Italy
| | - Annaluisa Mariconda
- Department
of Science, University of Basilicata, Viale dell’Ateneo Lucano
10, 85100 Potenza, Italy
| | - Jessica Ceramella
- Department
of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Domenica Scumaci
- Laboratory
of Proteomics, Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, S Venuta University Campus, 88100 Catanzaro, Italy
- Research
Center on Advanced Biochemistry and Molecular Biology, Magna Græcia University of Catanzaro, S Venuta University Campus, 88100 Catanzaro, Italy
| | - Alessia Catalano
- Department
of Pharmacy−Drug Sciences, University
of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| | - Camillo Rosano
- U.O.
Proteomica e Spettrometria di Massa, IRCCS
Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Giovanni Cuda
- Laboratory
of Proteomics, Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, S Venuta University Campus, 88100 Catanzaro, Italy
- Research
Center on Advanced Biochemistry and Molecular Biology, Magna Græcia University of Catanzaro, S Venuta University Campus, 88100 Catanzaro, Italy
| | - Maria Stefania Sinicropi
- Department
of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Pasquale Longo
- Department
of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy
| |
Collapse
|
6
|
Saha E, Rahaman A, Bhadra S, Mitra J. Exploring amine-rich supramolecular silver(I) metallogels for autonomous self-healing and as catalysts for a three component coupling reaction. Dalton Trans 2023; 52:15530-15538. [PMID: 37701939 DOI: 10.1039/d3dt01654d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
A series of Ag(I) supramolecular organo-aqueous gels have been synthesized in the presence of an amine-rich triazole ligand as a gelator. Judicious choice of the triazole derivative and counter anion allows a desired spatial orientation of the pendant amine functionality to accentuate the gelation ability and autonomous self-healability via hydrogen bonding. In addition, the hydrogen bond donors, i.e. pendant -NH2 groups, offer a critical proximity of counter anions to the Lewis acidic Ag(I) and the reactants for promoting a three component coupling reaction of an aldehyde, a terminal alkyne and an amine, giving expedient access to propargyl amines, with remarkable functional group tolerance for both aromatic and aliphatic aldehydes, and aryl acetylenes. Experiments substantiate the pivotal role of counter anions and H-bonding interactions in the observed preference for propargylamines over the diacetylene by-product. Our catalyst is robust, bench-stable, and recyclable, and demonstrates a catalytic efficiency comparable to or better than those of reported systems. The catalyst was found equally effective for the gram-scale synthesis of propargylamines. Our approach lies at the intersection of metal-based, H-bond-mediated counter anion-tuned catalysis, evincing a potential for the development of purpose-built supramolecular gels for desired catalytic applications in the future.
Collapse
Affiliation(s)
- Ekata Saha
- Inorganic Materials & Catalysis (IMC) Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar-364002, Gujarat, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Ajijur Rahaman
- Inorganic Materials & Catalysis (IMC) Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar-364002, Gujarat, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Sukalyan Bhadra
- Inorganic Materials & Catalysis (IMC) Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar-364002, Gujarat, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Joyee Mitra
- Inorganic Materials & Catalysis (IMC) Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar-364002, Gujarat, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
7
|
Ciardulli MC, Mariconda A, Sirignano M, Lamparelli EP, Longo R, Scala P, D'Auria R, Santoro A, Guadagno L, Della Porta G, Longo P. Activity and Selectivity of Novel Chemical Metallic Complexes with Potential Anticancer Effects on Melanoma Cells. Molecules 2023; 28:4851. [PMID: 37375406 DOI: 10.3390/molecules28124851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Human malignant melanoma cells from lymph node metastatic site (MeWo) were selected for testing several synthesized and purified silver(I) and gold(I) complexes stabilized by unsymmetrically substituted N-heterocyclic carbene (NHC) ligands, called L20 (N-methyl, N'-[2-hydroxy ethylphenyl]imidazol-2-ylide) and M1 (4,5-dichloro, N-methyl, N'-[2-hydroxy ethylphenyl]imidazol-2-ylide), having halogenide (Cl- or I-) or aminoacyl (Gly=N-(tert-Butoxycarbonyl)glycinate or Phe=(S)-N-(tert-Butoxycarbonyl)phenylalaninate) counterion. For AgL20, AuL20, AgM1 and AuM1, the Half-Maximal Inhibitory Concentration (IC50) values were measured, and all complexes seemed to reduce cell viability more effectively than Cisplatin, selected as control. The complex named AuM1 was the most active just after 8 h of treatment at 5 μM, identified as effective growth inhibition concentration. AuM1 also showed a linear dose and time-dependent effect. Moreover, AuM1 and AgM1 modified the phosphorylation levels of proteins associated with DNA lesions (H2AX) and cell cycle progression (ERK). Further screening of complex aminoacyl derivatives indicated that the most powerful were those indicated with the acronyms: GlyAg, PheAg, AgL20Gly, AgM1Gly, AuM1Gly, AgL20Phe, AgM1Phe, AuM1Phe. Indeed, the presence of Boc-Glycine (Gly) and Boc-L-Phenylalanine (Phe) showed an improved efficacy of Ag main complexes, as well as that of AuM1 derivatives. Selectivity was further checked on a non-cancerous cell line, a spontaneously transformed aneuploid immortal keratinocyte from adult human skin (HaCaT). In such a case, AuM1 and PheAg complexes resulted as the most selective allowing HaCaT viability at 70 and 40%, respectively, after 48 h of treatment at 5 μM. The same complexes tested on 3D MeWo static culture induced partial spheroid disaggregation after 24 h of culture, with almost half of the cells dead.
Collapse
Affiliation(s)
- Maria Camilla Ciardulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | - Annaluisa Mariconda
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Marco Sirignano
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Erwin Pavel Lamparelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | - Raffaele Longo
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Pasqualina Scala
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | - Raffaella D'Auria
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | - Antonietta Santoro
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
- Interdepartment Centre BIONAM, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Liberata Guadagno
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
- Interdepartment Centre BIONAM, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Pasquale Longo
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
8
|
Mohammadi L, Taghavi R, Hosseinifard M, Vaezi MR, Rostamnia S. Gold nanoparticle decorated post-synthesis modified UiO-66-NH 2 for A 3-coupling preparation of propargyl amines. Sci Rep 2023; 13:9051. [PMID: 37270660 DOI: 10.1038/s41598-023-35848-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 05/24/2023] [Indexed: 06/05/2023] Open
Abstract
In this report, the novel UiO‑66‑NH2 based-MOF(Zr) catalytic system which further modified with nitrogen-rich organic ligand (5-aminotetrazole) using post synthetic modification (PSM) approach has been prepared here as an efficient catalyst to promote the A3-coupling preparation of propargyl amines in green aquatic media. This newly highly efficient catalyst was synthesized upon Zr-based MOF (UiO‑66‑NH2) which successfully functionalized with 2,4,6‑trichloro‑1,3,5‑triazine (TCT) and 5‑aminotetrazole, following through stabilization of gold metal (Au) nanopartilces. The addition of N-rich organic ligand through post-synthesis modification which can be assisted to stabilize the bister and stable gold nanoparticles caused to unique structure of the final composite in favor of the progress of the A3 coupling reaction. Also several strategies comprising XRD, FT-IR, SEM, BET, TEM, TGA, ICP, EDS and elemental mapping analyzes, were used to indicate the successful preparation of the UiO-66-NH2@ Cyanuric Chloride@ 5-amino tetrazole/Au-NPs. The results of productivity catalyst are accomplished in good to excellent yields for all sort of reactions under mild conditions which is a proof of superior activity heterogeneous catalyst containing Au-nanoparticles. In addition, the suggested catalyst represented excellent reusability with no remarkable loss in activity up 9 sequential runs.
Collapse
Affiliation(s)
- Leila Mohammadi
- Department of Nano Technology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| | - Reza Taghavi
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST), PO BOX 16846-13114, Tehran, Iran
| | | | - Mohammad Reza Vaezi
- Department of Nano Technology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran.
| | - Sadegh Rostamnia
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST), PO BOX 16846-13114, Tehran, Iran
| |
Collapse
|
9
|
Mateus M, Kiss A, Císařová I, Karpiński TM, Rycek L. Synthesis of silver complexes with chelating bidentate N‐heterocyclic ligands, their application in catalytic A 3 coupling, and as antimicrobial agents. Appl Organomet Chem 2023; 37. [DOI: 10.1002/aoc.6994] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/17/2022] [Indexed: 08/23/2024]
Abstract
We present a synthesis of novel silver complexes stabilized by bidentate ligands based on N‐heterocyclic carbenes (NHC) linked with a bisamide linker. The ligand stabilizes the silver ion in a rare chelating mode. The synthesis of the complex depends on the equimolar ratio of the silver source and the ligand precursor. In case the excess of the silver source is used, the reaction leads to the formation of an unprecedented tetranuclear silver complex, stabilized by two equivalents of the ligand, where each of the silver atoms is coordinated by one NHC and one amide moiety. The silver complexes were applied as a catalyst in a multicomponent A3 coupling and proved to be a very efficient catalyst. The reaction provided desired products in yields up to 96%, and the use of low catalytic loading, as low as 0.1 mol%, was possible without significantly compromising the effectivity of the reaction. Moreover, the complexes showed broad spectra of antimicrobial activity, with minimal inhibitory concentrations in the range of 1 to 31 μg/ml against several Gram‐positive and Gram‐negative bacteria and fungi. Presented complexes represent synthetically challenging molecules, which show great applicability in catalysis and outstanding potential as antimicrobial agents.
Collapse
Affiliation(s)
- Miguel Mateus
- Department of Organic Chemistry, Faculty of Science Charles University Albertov 6 Prague 2 128 00 Czech Republic
| | - Anita Kiss
- Department of Organic Chemistry, Faculty of Science Charles University Albertov 6 Prague 2 128 00 Czech Republic
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science Charles University Albertov 6 Prague 2 128 43 Czech Republic
| | - Tomasz M. Karpiński
- Department of Medical Microbiology Poznań University of Medical Sciences Rokietnicka 10 Poznań 60‐806 Poland
| | - Lukas Rycek
- Department of Organic Chemistry, Faculty of Science Charles University Albertov 6 Prague 2 128 00 Czech Republic
| |
Collapse
|
10
|
Ceramella J, Troiano R, Iacopetta D, Mariconda A, Pellegrino M, Catalano A, Saturnino C, Aquaro S, Sinicropi MS, Longo P. Synthesis of Novel N-Heterocyclic Carbene-Ruthenium (II) Complexes, “Precious” Tools with Antibacterial, Anticancer and Antioxidant Properties. Antibiotics (Basel) 2023; 12:antibiotics12040693. [PMID: 37107055 PMCID: PMC10135378 DOI: 10.3390/antibiotics12040693] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Ruthenium N-heterocyclic carbene (Ru-NHC) complexes show interesting physico-chemical properties as catalysts and potential in medicinal chemistry, exhibiting multiple biological activities, among them anticancer, antimicrobial, antioxidant, and anti-inflammatory. Herein, we designed and synthesized a new series of Ru-NHC complexes and evaluated their biological activities as anticancer, antibacterial, and antioxidant agents. Among the newly synthesized complexes, RANHC-V and RANHC-VI are the most active against triple-negative human breast cancer cell lines MDA-MB-231. These compounds were selective in vitro inhibitors of the human topoisomerase I activity and triggered cell death by apoptosis. Furthermore, the Ru-NHC complexes’ antimicrobial activity was studied against Gram-positive and -negative bacteria, revealing that all the complexes possessed the best antibacterial activity against the Gram-positive Staphylococcus aureus, at a concentration of 25 µg/mL. Finally, the antioxidant effect was assessed by DPPH and ABTS radicals scavenging assays, resulting in a higher ability for inhibiting the ABTS•+, with respect to the well-known antioxidant Trolox. Thus, this work provides encouraging insights for further development of novel Ru-NHC complexes as potent chemotherapeutic agents endowed with multiple biological properties.
Collapse
Affiliation(s)
- Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy
| | - Rubina Troiano
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy
| | - Annaluisa Mariconda
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Michele Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Carmela Saturnino
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
11
|
Catalano A, Mariconda A, Sinicropi MS, Ceramella J, Iacopetta D, Saturnino C, Longo P. Biological Activities of Ruthenium NHC Complexes: An Update. Antibiotics (Basel) 2023; 12:365. [PMID: 36830276 PMCID: PMC9952499 DOI: 10.3390/antibiotics12020365] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Ruthenium N-heterocyclic carbene (NHC) complexes have unique physico-chemical properties as catalysts and a huge potential in medicinal chemistry and pharmacology, exhibiting a variety of notable biological activities. In this review, the most recent studies on ruthenium NHC complexes are summarized, focusing specifically on antimicrobial and antiproliferative activities. Ruthenium NHC complexes are generally active against Gram-positive bacteria, such as Bacillus subtilis, Staphylococcus aureus, Micrococcus luteus, Listeria monocytogenes and are seldom active against Gram-negative bacteria, including Salmonella typhimurium, Pseudomonas aeruginosa and Escherichia coli and fungal strains of Candida albicans. The antiproliferative activity was tested against cancer cell lines of human colon, breast, cervix, epidermis, liver and rat glioblastoma cell lines. Ruthenium NHC complexes generally demonstrated cytotoxicity higher than standard anticancer drugs. Further studies are needed to explore the mechanism of action of these interesting compounds.
Collapse
Affiliation(s)
- Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | | | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
12
|
Mohammadi L, Hosseinifard M, Vaezi MR, Rostamnia S. Stabilization of copper nanoparticles onto the double Schiff-base-functionalized ZSM-5 for A 3 coupling reaction catalysis aimed under mild conditions. RSC Adv 2023; 13:4843-4858. [PMID: 36760293 PMCID: PMC9903180 DOI: 10.1039/d2ra07700k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/04/2023] [Indexed: 02/10/2023] Open
Abstract
In this research a highly efficient and heterogeneous catalyst of ZSM-5@APTMS@(E)-4-((pyridin-2-ylimino)methyl) benzaldehyde@Cu-NPs was synthesized for upgrading the A3 coupling reaction for the synthesis of propargylamines under mild conditions. Rational tuning of the microenvironment of metallic NPs to improve efficiency and reusability in catalytic performances is of significance for scalable applications. Firstly, ZSM-5 was immobilized with APTMS (3-aminopropyltrimethoxysilane) and further modified with (E)-4-((pyridin-2-ylimino)methyl)benzaldehyde. Subsequently, the amine-activated zeolite@(E)-4-((pyridin-2-ylimino)methyl)benzaldehyde was applied to increase the stabilization of Cu metal nanoparticles. The catalyst was treated with hydrazine to reduce Cu(ii) to Cu(0), which led to active metal sites. The results of catalytic performance in comparison with different parts of catalysis indicate high efficiency due to the stabilization of copper nanoparticles onto the newly synthesized support of MOF modified with nitrogen aromatic groups. The addition of N-rich organic ligand through modification alters the electronic structure of the final composite in favor of the progress of the A3-coupling reaction. Moreover, the proposed catalyst showed no reduction in the catalytic performance up to four cycles, and a minor loss of efficiency occurs after the seventh cycle. In addition, the catalyst was effectively recycled up to 7 times without leaching of Cu-NPs.
Collapse
Affiliation(s)
- Leila Mohammadi
- Department of Nano Technology and Advanced Materials, Materials and Energy Research Center Karaj Iran
| | | | - Mohammad Reza Vaezi
- Department of Nano Technology and Advanced Materials, Materials and Energy Research Center Karaj Iran
| | - Sadegh Rostamnia
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST) PO BOX 16846-13114 Tehran Iran
| |
Collapse
|
13
|
Longo R, Raimondo M, Vertuccio L, Ciardulli MC, Sirignano M, Mariconda A, Della Porta G, Guadagno L. Bottom-Up Strategy to Forecast the Drug Location and Release Kinetics in Antitumoral Electrospun Drug Delivery Systems. Int J Mol Sci 2023; 24:ijms24021507. [PMID: 36675021 PMCID: PMC9861055 DOI: 10.3390/ijms24021507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Electrospun systems are becoming promising devices usable for topical treatments. They are eligible to deliver different therapies, from anti-inflammatory to antitumoral. In the current research, polycaprolactone electrospun membranes loaded with synthetic and commercial antitumoral active substances were produced, underlining how the matrix-filler affinity is a crucial parameter for designing drug delivery devices. Nanofibrous membranes loaded with different percentages of Dacarbazine (the drug of choice for melanoma) and a synthetic derivative of Dacarbazine were produced and compared to membranes loaded with AuM1, a highly active Au-complex with low affinity to the matrix. AFM morphologies showed that the surface profile of nanofibers loaded with affine substances is similar to one of the unloaded systems, thanks to the nature of the matrix-filler interaction. FTIR analyses proved the efficacy of the interaction between the amidic group of the Dacarbazine and the polycaprolactone. In AuM1-loaded membranes, because of the weak matrix-filler interaction, the complex is mainly aggregated in nanometric domains on the nanofiber surface, which manifests a nanometric roughness. Consequently, the release profiles follow a Fickian behavior for the Dacarbazine-based systems, whereas a two-step with a highly prominent burst effect was observed for AuM1 systems. The performed antitumoral tests evidence the high-cytotoxic activity of the electrospun systems against melanoma cell lines, proving that the synthetic substances are more active than the commercial dacarbazine.
Collapse
Affiliation(s)
- Raffaele Longo
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Marialuigia Raimondo
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Luigi Vertuccio
- Department of Engineering, University of Campania “Luigi Vanvitelli”, Via Roma 29, 813031 Aversa, Italy
| | - Maria Camilla Ciardulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | - Marco Sirignano
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Annaluisa Mariconda
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
- Interdepartment Centre BIONAM, Università di Salerno, Via Giovanni Paolo I, 84084 Fisciano, Italy
| | - Liberata Guadagno
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
- Correspondence:
| |
Collapse
|
14
|
Drici MEA, Amina B, Redouane B, Mohammed B, Sumeya B, Debdab M. Iron phosphate nanoparticles as an effective catalyst for propargylamine synthesis. REACTION KINETICS MECHANISMS AND CATALYSIS 2023. [DOI: 10.1007/s11144-023-02345-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
15
|
Mariconda A, Iacopetta D, Sirignano M, Ceramella J, Costabile C, Pellegrino M, Rosano C, Catalano A, Saturnino C, El‐Kashef H, Aquaro S, Sinicropi MS, Longo P. N-Heterocyclic Carbene (NHC) Silver Complexes as Versatile Chemotherapeutic Agents Targeting Human Topoisomerases and Actin. ChemMedChem 2022; 17:e202200345. [PMID: 35904129 PMCID: PMC9804882 DOI: 10.1002/cmdc.202200345] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/28/2022] [Indexed: 01/09/2023]
Abstract
In recent years, the number of people suffering from cancer has risen rapidly and the World Health Organization and U.S. and European governments have identified this pathology as a priority issue. It is known that most bioactive anticancer molecules do not target a single protein but exert pleiotropic effects, simultaneously affecting multiple pathways. In our study, we designed and synthesized a new series of silver N-heterocyclic carbene (NHC) complexes [(NHC)2 Ag]+ [AgX2 ]- (X=iodide or acetate). The new complexes were active against two human breast cancer cell lines, MCF-7 and MDA-MB-231. These compounds showed multiple target actions as anticancer, by inhibiting in vitro the activity of the human topoisomerases I and II and interfering with the cytoskeleton dynamic, as also confirmed by in silico studies. Moreover, the antimicrobial activity of these silver complexes was studied against Gram-positive/negative bacteria. These dual properties provide a two-tiered approach, making these compounds of interest to be further deepened for the development of new chemotherapeutic agents.
Collapse
Affiliation(s)
- Annaluisa Mariconda
- Department of ScienceUniversity of BasilicataViale dell'Ateneo Lucano 1085100PotenzaItaly
| | - Domenico Iacopetta
- Department of PharmacyHealthand Nutritional SciencesUniversity of CalabriaVia Pietro Bucci87036Arcavacata diRendeItaly
| | - Marco Sirignano
- Department of Chemistry and BiologyUniversity of SalernoVia Giovanni Paolo II, 132Fisciano84084Italy
| | - Jessica Ceramella
- Department of PharmacyHealthand Nutritional SciencesUniversity of CalabriaVia Pietro Bucci87036Arcavacata diRendeItaly
| | - Chiara Costabile
- Department of Chemistry and BiologyUniversity of SalernoVia Giovanni Paolo II, 132Fisciano84084Italy
| | - Michele Pellegrino
- Department of PharmacyHealthand Nutritional SciencesUniversity of CalabriaVia Pietro Bucci87036Arcavacata diRendeItaly
| | - Camillo Rosano
- Biopolymers and Proteomics IRCCS Ospedale Policlinico San Martino – ISTLargo R. Benzi 1016132GenovaItaly
| | - Alessia Catalano
- Department of Pharmacy-Drug SciencesUniversity of Bari “Aldo Moro”Via Edoardo Orabona 470126BariItaly
| | - Carmela Saturnino
- Department of ScienceUniversity of BasilicataViale dell'Ateneo Lucano 1085100PotenzaItaly
| | | | - Stefano Aquaro
- Department of PharmacyHealthand Nutritional SciencesUniversity of CalabriaVia Pietro Bucci87036Arcavacata diRendeItaly
| | - Maria Stefania Sinicropi
- Department of PharmacyHealthand Nutritional SciencesUniversity of CalabriaVia Pietro Bucci87036Arcavacata diRendeItaly
| | - Pasquale Longo
- Department of Chemistry and BiologyUniversity of SalernoVia Giovanni Paolo II, 132Fisciano84084Italy
| |
Collapse
|
16
|
Guadagno L, Raimondo M, Vertuccio L, Lamparelli EP, Ciardulli MC, Longo P, Mariconda A, Della Porta G, Longo R. Electrospun Membranes Designed for Burst Release of New Gold-Complexes Inducing Apoptosis of Melanoma Cells. Int J Mol Sci 2022; 23:ijms23137147. [PMID: 35806152 PMCID: PMC9267035 DOI: 10.3390/ijms23137147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023] Open
Abstract
Two non-commercial metallic Au-based complexes were tested against one of the most aggressive malignant melanomas of the skin (MeWo cells), through cell viability and time-lapse live-cell imaging system assays. The tests with the complexes were carried out both in the form of free metallic complexes, directly in contact with the MeWo cell line culture, and embedded in fibers of Polycaprolactone (PCL) membranes produced by the electrospinning technique. Membranes functionalized with complexes were prepared to evaluate the efficiency of the membranes against the melanoma cells and therefore their feasibility in the application as an antitumoral patch for topical use. Both series of tests highlighted a very effective antitumoral activity, manifesting a very relevant cell viability inhibition after both 24 h and 48 h. In the case of the AuM1 complex at the concentration of 20 mM, melanoma cells completely died in this short period of time. A mortality of around 70% was detected from the tests performed using the membranes functionalized with AuM1 complex at a very low concentration (3 wt.%), even after 24 h of the contact period. The synthesized complexes also manifest high selectivity with respect to the MeWo cells. The peculiar structural and morphological organization of the nanofibers constituting the membranes allows for a very effective antitumoral activity in the first 3 h of treatment. Experimental points of the release profiles were perfectly fitted with theoretical curves, which easily allow interpretation of the kinetic phenomena occurring in the release of the synthesized complexes in the chosen medium.
Collapse
Affiliation(s)
- Liberata Guadagno
- Department of Industrial Engineering, University of Salerno, 84084 Fisciano, Italy;
- Correspondence: (L.G.); (R.L.)
| | - Marialuigia Raimondo
- Department of Industrial Engineering, University of Salerno, 84084 Fisciano, Italy;
| | - Luigi Vertuccio
- Department of Engineering, University of Campania “Luigi Vanvitelli”, 813031 Aversa, Italy;
| | - Erwin Pavel Lamparelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (E.P.L.); (M.C.C.); (G.D.P.)
| | - Maria Camilla Ciardulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (E.P.L.); (M.C.C.); (G.D.P.)
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, 84084 Fisciano, Italy;
| | | | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (E.P.L.); (M.C.C.); (G.D.P.)
- Interdepartment Centre BIONAM, Università di Salerno, 84084 Fisciano, Italy
| | - Raffaele Longo
- Department of Industrial Engineering, University of Salerno, 84084 Fisciano, Italy;
- Correspondence: (L.G.); (R.L.)
| |
Collapse
|
17
|
Abstract
The multicomponent reaction of aldehydes, amines, and alkynes, known as A3 coupling, yields propargylamines, a valuable organic scaffold, and has received significant interest and attention in the last years. In order to fully realise the potential of the metal-based catalytic protocols that facilitate this transformation, we summarise substrates, in situ and well-characterised synthetic methods that provide this scaffold and attempt a monumental classification considering several variables (Metal, Coordinating atom(s), Ligand type and name, in-situ or well-characterised, co-catalyst, catalyst and ligand Loading (mol%), solvent, volume, atmosphere, temperature, microwave, time, yield, selectivity (e.e. d.r.), substrate name, functionality, loading (amines, aldehydes, alkynes), and use of molecular sieves). This pioneering work creates a valuable database that contains 2376 entries and allows us to produce graphs and better visualise their impact on the reaction.
Collapse
|
18
|
|
19
|
Ceramella J, Mariconda A, Sirignano M, Iacopetta D, Rosano C, Catalano A, Saturnino C, Sinicropi MS, Longo P. Novel Au Carbene Complexes as Promising Multi-Target Agents in Breast Cancer Treatment. Pharmaceuticals (Basel) 2022; 15:507. [PMID: 35631334 PMCID: PMC9146163 DOI: 10.3390/ph15050507] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/09/2022] [Accepted: 04/19/2022] [Indexed: 01/27/2023] Open
Abstract
Over the past decade, metal complexes based on N-heterocyclic carbenes (NHCs) have attracted great attention due to their wide and exciting applications in material sciences and medicinal chemistry. In particular, the gold-based complexes are the focus of research efforts for the development of new anticancer compounds. Literature data and recent results, obtained by our research group, reported the design, the synthesis and the good anticancer activity of some silver and gold complexes with NHC ligands. In particular, some of these complexes were active towards some breast cancer cell lines. Considering this evidence, here we report some new Au-NHC complexes prepared in order to improve solubility and biological activity. Among them, the compounds 1 and 6 showed an interesting anticancer activity towards the breast cancer MDA-MB-231 and MCF-7 cell lines, respectively. In addition, in vitro and in silico studies demonstrated that they were able to inhibit the activity of the human topoisomerases I and II and the actin polymerization reaction. Moreover, a downregulation of vimentin expression and a reduced translocation of NF-kB into the nucleus was observed. The interference with these vital cell structures induced breast cancer cells' death by triggering the extrinsic apoptotic pathway.
Collapse
Affiliation(s)
- Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy; (J.C.); (M.S.S.)
| | - Annaluisa Mariconda
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (A.M.); (C.S.)
| | - Marco Sirignano
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.S.); (P.L.)
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy; (J.C.); (M.S.S.)
| | - Camillo Rosano
- U.O. Proteomica e Spettrometria di Massa, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 1632 Genova, Italy
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy;
| | - Carmela Saturnino
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (A.M.); (C.S.)
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy; (J.C.); (M.S.S.)
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.S.); (P.L.)
| |
Collapse
|
20
|
Catalytic and Biological Activity of Silver and Gold Complexes Stabilized by NHC with Hydroxy Derivatives on Nitrogen Atoms. Catalysts 2021. [DOI: 10.3390/catal12010018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this paper is reported the synthesis of N,N′ hydroxy derivative of NHC silver (3a–4a) and gold(I) (3b–4b) complexes of general formula [M(NHC)2]+ [MX2]−. All compounds were characterized by spectroscopic and analytic techniques. The complexes turned out to be effective in both catalytic and biological applications. They catalyzed the coupling of aldehyde, piperidine, and phenylacetylene in A3-reaction to produce propargylamines and showed antimicrobial activity. In fact, minimal inhibition concentration (MIC) tests with Gram-positive and Gram-negative bacteria demonstrated that the silver compounds are selective toward E. coli, whereas the gold analogues are active against S. aureus. Moreover, the N,N′ hydroxy derivative of NHC silver complexes 3a and 4a exhibited good anticancer activity on the HeLA cancer cells (3a-IC50 = 12.2 ± 0.1 µM, 4a-IC50 = 11.9 ± 1.2 µM), whereas gold complex 4b displayed good anticancer activity towards the MCF-7 cells (IC50 = 12.2 ± 1.2 µM).
Collapse
|
21
|
Babaei B, Mamaghani M, Mokhtary M. Clean Synthesis of Propargylamines Using Novel Magnetically Recyclable Silver Nanocatalyst (AgMNPs). Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.2015401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Bahareh Babaei
- Department of Chemistry, Faculty of Sciences, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Manouchehr Mamaghani
- Department of Chemistry, Faculty of Sciences, Rasht Branch, Islamic Azad University, Rasht, Iran
- Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Masoud Mokhtary
- Department of Chemistry, Faculty of Sciences, Rasht Branch, Islamic Azad University, Rasht, Iran
| |
Collapse
|
22
|
Demir Atli D, Şen B. Dinuclear silver-bis(N-heterocyclic carbene) complexes: Synthesis, catalytic activity in propargylamine formation and computational studies. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1972097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Deniz Demir Atli
- Faculty of Science and Arts, Department of Chemistry, Manisa Celal Bayar University, Manisa, Turkey
| | - Betül Şen
- Faculty of Science, Department of Physics, Dokuz Eylül University, Izmir, Buca, Turkey
| |
Collapse
|
23
|
Şahin-Bölükbaşı S, Cantürk-Kılıçkaya P, Kılıçkaya O. Silver(I)-N-heterocyclic carbene complexes challenge cancer; evaluation of their anticancer properties and in silico studies. Drug Dev Res 2021; 82:907-926. [PMID: 33978961 DOI: 10.1002/ddr.21822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/19/2021] [Accepted: 04/25/2021] [Indexed: 02/05/2023]
Abstract
Because of the continuous need for efficient therapeutic agents against various kinds of cancers and infectious diseases, the pharmaceutical industry has to find new candidates and strategies to develop novel and efficient drugs. They increasingly use computational tools in R&D stages for screening extensive sets of drug candidates before starting pre-clinical and clinical trials. N-Heterocyclic carbenes (NHCs) can be evaluated as good drug candidates because they offer both anti-cancer and anti-inflammatory features with their general low-toxicity profiles. To date, different kinds of NHCs (Cu, Co, Ni, Au, Ag, Ru, etc.) have been synthesized and their therapeutic uses has been shown. Here, we have reviewed the recent studies focused on Ag(I)-NHC complexes and their anti-cancer activities. Also, existing examples of the usage of density functional theory and structure-activity relationship have been evaluated.
Collapse
Affiliation(s)
- Serap Şahin-Bölükbaşı
- Department of Biochemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Pakize Cantürk-Kılıçkaya
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Ozan Kılıçkaya
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
24
|
Neshat A, Gholinejad M, Afrasi M, Mastrorilli P, Todisco S, Gilanchi S, Osanlou F. Heterocyclic thiolates and phosphine ligands in copper‐catalyzed synthesis of propargylamines in water. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Abdollah Neshat
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan Iran
| | - Mohammad Gholinejad
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan Iran
| | - Mahmoud Afrasi
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan Iran
| | | | | | - Shirin Gilanchi
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan Iran
| | - Farzane Osanlou
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan Iran
| |
Collapse
|
25
|
Bagherzade A, Nemati F. Solvent-free coupling of aldehyde, alkyne, and amine over a versatile catalyst: Ag-functionalized mesoporous S, P-doped g-C3N4. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04453-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
26
|
Sheikh KUN, Amin H, Haque RA, Abdul Majid AS, Yaseen M, Iqbal MA. An overview of synthetic methodologies of organometallic and coordination compounds of gold. J COORD CHEM 2021. [DOI: 10.1080/00958972.2020.1866176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | - Hira Amin
- Department of Chemistry, University of Agriculture, Faislababd, Pakistan
| | - Rosenani A Haque
- School of Chemical Science, Universiti Sains Malaysia, Penang, Malaysia
| | | | - Muhammad Yaseen
- Department of Chemistry, Division of Science & Technology, University of Education, Lahore, Pakistan
| | - Muhammad Adnan Iqbal
- Department of Chemistry, University of Agriculture, Faislababd, Pakistan
- Organometallic & Coordination Chemistry Laboratory, University of Agriculture, Faislababd, Pakistan
| |
Collapse
|
27
|
Costabile C, Mariconda A, Sirignano M, Crispini A, Scarpelli F, Longo P. A green approach for A 3-coupling reactions: an experimental and theoretical study on NHC silver and gold catalysts. NEW J CHEM 2021. [DOI: 10.1039/d1nj03444h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
N-heterocyclic carbene silver and gold complexes active in A3-coupling (aldehyde–alkyne–amine) reactions in green conditions.
Collapse
Affiliation(s)
- Chiara Costabile
- Dipartimento di Chimica e Biologia, Università degli Studi di Salerno, Via Giovanni Paolo II, 132 84081 Fisciano, SA, Italy
| | - Annaluisa Mariconda
- Dipartimento di Scienze, Università degli Studi della Basilicata, Viale Dell’Ateneo Lucano, 10 85100 Potenza, Italy
| | - Marco Sirignano
- Dipartimento di Chimica e Biologia, Università degli Studi di Salerno, Via Giovanni Paolo II, 132 84081 Fisciano, SA, Italy
| | - Alessandra Crispini
- MAT-InLAB, LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie, Chimiche Università della Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Francesca Scarpelli
- MAT-InLAB, LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie, Chimiche Università della Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Pasquale Longo
- Dipartimento di Chimica e Biologia, Università degli Studi di Salerno, Via Giovanni Paolo II, 132 84081 Fisciano, SA, Italy
| |
Collapse
|
28
|
Zeng J, Yi F, Cai M. Heterogeneous gold(I)-catalyzed three-component reaction of aldehydes, alkynes, and orthoformates toward propargyl ethers. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1761391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Jiajun Zeng
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education and College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Feiyan Yi
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education and College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Mingzhong Cai
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education and College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
29
|
Iacopetta D, Rosano C, Sirignano M, Mariconda A, Ceramella J, Ponassi M, Saturnino C, Sinicropi MS, Longo P. Is the Way to Fight Cancer Paved with Gold? Metal-Based Carbene Complexes with Multiple and Fascinating Biological Features. Pharmaceuticals (Basel) 2020; 13:ph13050091. [PMID: 32403274 PMCID: PMC7281280 DOI: 10.3390/ph13050091] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/28/2020] [Accepted: 05/08/2020] [Indexed: 12/21/2022] Open
Abstract
Herein, we report the synthesis and the multiple anti-tumor properties of new gold and silver carbene complexes. The chemical modifications, grounded on our previous studies, led us to identify a good lead complex, gold-based, whose biological features are very exciting and promising in the anti-cancer research and could be further developed. Indeed, the bis-[4,5-dichloro-(N-methyl-N’(2-hydroxy-2-phenyl)ethyl-imidazole-2-ylidene)gold(I)]+[dichloro-gold]− (AuL7) complex possesses the ability to interfere with at least three important and different intracellular targets, namely the human topoisomerases I and II and tubulin, which are able to modulate metabolic processes not directly correlated each other. We proved that the modifications of the ligands structure in AuL7, with respect to another already published complex, i.e., bis-[4,5-dichloro-(N-methyl-N’(cyclopentane-2ol)-imidazole-2-ylidine)gold(I)]+[dichloro-gold]− (AuL4), produce a different behavior toward tubulin-polymerization process, since AuL7 is a tubulin-polymerization inhibitor and AuL4 a stabilizer, with the final same result of hampering the tumor growth. Taken together, our outcomes designate AuL7 as a promising compound for the development of multi-targeted anti-cancer therapies.
Collapse
Affiliation(s)
- Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy; (D.I.); (M.S.S.)
| | - Camillo Rosano
- Biopolymers and Proteomics IRCCS, Ospedale Policlinico San Martino–IST, Largo R. Benzi 10, 16132 Genova, Italy; (C.R.); (M.P.)
| | - Marco Sirignano
- Department of Biology and Chemistry, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.S.); (P.L.)
| | - Annaluisa Mariconda
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy;
- Correspondence: (A.M.); (J.C.); Tel.: +39-0971-202194 (A.M.); +39-0984-493200 (J.C.)
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy; (D.I.); (M.S.S.)
- Correspondence: (A.M.); (J.C.); Tel.: +39-0971-202194 (A.M.); +39-0984-493200 (J.C.)
| | - Marco Ponassi
- Biopolymers and Proteomics IRCCS, Ospedale Policlinico San Martino–IST, Largo R. Benzi 10, 16132 Genova, Italy; (C.R.); (M.P.)
| | - Carmela Saturnino
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy;
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy; (D.I.); (M.S.S.)
| | - Pasquale Longo
- Department of Biology and Chemistry, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.S.); (P.L.)
| |
Collapse
|