1
|
Tan X, Min R, Wang S, Ning H, Mu B, Cao N, Yan W, Jin X, Yang C. Lactonization of Diols Over Highly Efficient Metal-Based Catalysts. CHEMSUSCHEM 2024; 17:e202400909. [PMID: 39264637 DOI: 10.1002/cssc.202400909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/01/2024] [Indexed: 09/13/2024]
Abstract
Lactones has gained increasing attention in recent years due to wide application in polymer and pharmaceutical industries. Traditional synthetic methods of lactones often involve harsh operating temperature, use of strong alkalis and toxic oxidants. Therefore, lactonization of diols under milder conditions have been viewed as the most promising route for future commercialization. A variety of metal catalysts (Ru, Pt, Ir, Au, Fe, Cu, Co, and Zn) have been developed for highly efficient oxidant-, acceptor-, base- and additive-free lactonization processes. However, only a few initial attempts have been reported with no further details on catalytic mechanism being disclosed in literature. There demands a systematic study of the mechanistic details and the structure-function relationship to guide the catalyst design. In this work, we critically reviewed and discussed the structure-function relationship, the catalytic reaction mechanism, the catalyst stability, as well as the effect of oxidant and solvent for lactonization of diols. This work may provide additional insights for the development of other oxygen-containing functional molecules for material science and technologies.
Collapse
Affiliation(s)
- Xiaomeng Tan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong Province, 266580, China
| | - Rui Min
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong Province, 266580, China
| | - Shiyu Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong Province, 266580, China
| | - Hui Ning
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong Province, 266580, China
| | - Baoquan Mu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong Province, 266580, China
| | - Ning Cao
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong Province, 266580, China
| | - Wenjuan Yan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong Province, 266580, China
| | - Xin Jin
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong Province, 266580, China
| | - Chaohe Yang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong Province, 266580, China
| |
Collapse
|
2
|
Taghavi Fardood S, Moradnia F, Forootan R, Abbassi R, Jalalifar S, Ramazani A, Sillanpӓӓ M. Facile green synthesis, characterization and visible light photocatalytic activity of MgFe2O4@CoCr2O4 magnetic nanocomposite. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113621] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
3
|
Cai M, Wang X, Fang Y, Chen Y, Dai L. Robust Mg(Ca)Zr-Doped Acid-Base Bifunctional Mesoporous Silica and Their Applications in the Deacetalization-Knoevenagel Reaction. Inorg Chem 2021; 60:8924-8935. [PMID: 34101440 DOI: 10.1021/acs.inorgchem.1c00819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of Mg(Ca)Zr-doped acid-base bifunctional mesoporous silica were synthesized to study the impact of the one-step or two-step impregnation method on material structure. The two-step method seems to be a better way to synthesize metal-based functionalized catalyst and their catalytic performance is investigated using deacetalization-Knoevenagel reaction as the probe reaction. The coexisting dual active sites and suitable designing routes endowed highly efficient (Conv. >99.6%, Sel. >99.8%) and robust stability (10 consecutive cycles) of these materials. The present process succeeded in preparing catalysts decorated with acid-base sites by doping acidic and alkali metal species rather than grafting organic groups.
Collapse
Affiliation(s)
- Menglu Cai
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou 310027, China
| | - Xiaozhong Wang
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou 310027, China.,Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Yangyang Fang
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou 310027, China
| | - Yingqi Chen
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou 310027, China
| | - Liyan Dai
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou 310027, China
| |
Collapse
|
4
|
Cai M, Li J, Wang X, Zhang M, Fang Y, An Y, Chen Y, Dai L. Zn-doped W/aluminium oxide catalyst: Efficient strategy towards sustainable oxidation of alcohols. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|