1
|
Tatarchuk T. Studying the Defects in Spinel Compounds: Discovery, Formation Mechanisms, Classification, and Influence on Catalytic Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1640. [PMID: 39452977 PMCID: PMC11510202 DOI: 10.3390/nano14201640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
Spinel ferrites demonstrate extensive applications in different areas, like electrodes for electrochemical devices, gas sensors, catalysts, and magnetic adsorbents for environmentally important processes. However, defects in the real spinel structure can change the many physical and chemical properties of spinel ferrites. Although the number of defects in a crystal spinel lattice is small, their influence on the vast majority of physical properties could be really decisive. This review provides an overview of the structural characteristics of spinel compounds (e.g., CoFe2O4, NiFe2O4, ZnFe2O4, Fe3O4, γ-Fe2O3, Co3O4, Mn3O4, NiCo2O4, ZnCo2O4, Co2MnO4, etc.) and examines the influence of defects on their properties. Attention was paid to the classification (0D, 1D, 2D, and 3D defects), nomenclature, and the formation of point and surface defects in ferrites. An in-depth description of the defects responsible for the physicochemical properties and the methodologies employed for their determination are presented. DFT as the most common simulation approach is described in relation to modeling the point defects in spinel compounds. The significant influence of defect distribution on the magnetic interactions between cations, enhancing magnetic properties, is highlighted. The main defect-engineering strategies (direct synthesis and post-treatment) are described. An antistructural notation of active centers in spinel cobalt ferrite is presented. It is shown that the introduction of cations with different charges (e.g., Cu(I), Mn(II), Ce(III), or Ce(IV)) into the cobalt ferrite spinel matrix results in the formation of various point defects. The ability to predict the type of defects and their impact on material properties is the basis of defect engineering, which is currently an extremely promising direction in modern materials science.
Collapse
Affiliation(s)
- Tetiana Tatarchuk
- Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Kraków, Poland;
- Educational and Scientific Center of Materials Science and Nanotechnology, Vasyl Stefanyk Precarpathian National University, 76018 Ivano-Frankivsk, Ukraine
| |
Collapse
|
2
|
Puthiyaveetil PP, Torris A, Dilwale S, Kanheerampockil F, Kurungot S. Cathode|Electrolyte Interface Engineering by a Hydrogel Polymer Electrolyte for a 3D Porous High-Voltage Cathode Material in a Quasi-Solid-State Zinc Metal Battery by In Situ Polymerization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403158. [PMID: 38837611 DOI: 10.1002/smll.202403158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/26/2024] [Indexed: 06/07/2024]
Abstract
This work highlights the development of a superior cathode|electrolyte interface for the quasi solid-state rechargeable zinc metal battery (QSS-RZMB) by a novel hydrogel polymer electrolyte using an ultraviolet (UV) light-assisted in situ polymerization strategy. By integrating the cathode with a thin layer of the hydrogel polymer electrolyte, this technique produces an integrated interface that ensures quick Zn2+ ion conduction. The coexistence of nanowires for direct electron routes and the enhanced electrolyte ion infiltration and diffusion by the 3D porous flower structure with a wide open surface of the Zn-MnO electrode complements the interface formation during the in situ polymerization process. The QSS-RZMB configured with an integrated cathode (i-Zn-MnO) and the hydrogel polymer electrolyte (PHPZ-30) as the separator yields a comparable specific energy density of 214.14 Wh kg-1 with that of its liquid counterpart (240.38 Wh kg-1, 0.5 M Zn(CF3SO3)2 aqueous electrolyte). Other noteworthy features of the presented QSS-RZMB system include its superior cycle life of over 1000 charge-discharge cycles and 85% capacity retention with 99% coulombic efficiency at the current density of 1.0 A g-1, compared to only 60% capacity retention over 500 charge-discharge cycles displayed by the liquid-state system under the same operating conditions.
Collapse
Affiliation(s)
- Priyanka Pandinhare Puthiyaveetil
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Arun Torris
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Swati Dilwale
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Fayis Kanheerampockil
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Sreekumar Kurungot
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
3
|
Liu H, Wang J, Yu H, Xiong H, Chen Y, Wang C, Xiao J. Promoted Carbon Monoxide Sensing Performance of a Bi 2Mn 4O 10-Based Mixed-Potential Sensor by Regulating Oxygen Vacancies. ACS Sens 2022; 7:2978-2986. [PMID: 36166731 DOI: 10.1021/acssensors.2c01161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The YSZ-based mixed-potential sensor has exhibited promising application prospects for in situ carbon monoxide (CO) monitoring owing to its excellent thermal stability. However, the way to further enhance the sensitivity and selectivity of the sensor remains challenging due to the limitation of the sensing material. In the present work, we proposed a strategy of introducing moderate oxygen vacancies in the transition metal oxide sensing material to enhance CO sensing performance. More importantly, the oxygen vacancies of the sensing electrode were regulated by adjusting the volatilization of the Bi element at different sintering temperatures. Meanwhile, the stable mullite structure and variable valency of Mn were also exploited to maintain the phase structure stability and charge balance brought by the loss of Bi. The relationship between CO sensing properties and the proportion of both Mn3+/Mn4+ and oxygen vacancies was elucidated from XPS and EIS measurements. By contrast, the 800 °C-sintered Bi2Mn4O10 possesses the highest oxygen vacancy content and thus exhibits preferable sensing performance including a lower detecting limit (10 ppm), swifter response/recovery processes, and enhanced CO sensitivity (-70.47 mV/decade operated at 450 °C) with satisfactory selectivity and stability, indicating a promising prospect for CO monitoring under exhaust environments.
Collapse
Affiliation(s)
- Hongming Liu
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Jingxin Wang
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Hanyu Yu
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Hai Xiong
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Yue Chen
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Chao Wang
- School of Automobile and Traffic Engineering of Wuhan University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Jianzhong Xiao
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| |
Collapse
|
4
|
Mirasgari M, Alavi SM, Rezaei M. Effects of partial substitution of Cu by Mn and Co in LaCu0.5Ni0.5O3 catalyst synthesized by mechanochemical method in the total oxidation of methane. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04775-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
5
|
Topka P, Jirátová K, Dvořáková M, Balabánová J, Koštejn M, Kovanda F. Hydrothermal deposition as a novel method for the preparation of Co-Mn mixed oxide catalysts supported on stainless steel meshes: application to VOC oxidation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:5172-5183. [PMID: 34417699 DOI: 10.1007/s11356-021-15906-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
The aim of this work was to develop a novel method for the preparation of structured Co-Mn mixed oxide catalysts: deposition on stainless steel meshes by hydrothermal synthesis. The use of meshes enabled the deposition of a thin layer of the active phase, which significantly suppressed the influence of internal diffusion. Consequently, the prepared catalysts exhibited from 48 to 114 times higher catalytic activity in ethanol oxidation than the commercial pelleted Co-Mn-Al catalyst. Moreover, we have shown that their catalytic activity correlated with the proportion of surface oxygen vacancies determined by XPS. Finally, the outstanding activity of the catalyst with Co:Mn ratio of 0.5 was ascribed to the mutual effect of high number of oxygen vacancies and exceptional redox properties.
Collapse
Affiliation(s)
- Pavel Topka
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 135, 165 02, Prague, Czech Republic.
| | - Květuše Jirátová
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 135, 165 02, Prague, Czech Republic
| | - Michaela Dvořáková
- Department of Solid State Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Jana Balabánová
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 135, 165 02, Prague, Czech Republic
| | - Martin Koštejn
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 135, 165 02, Prague, Czech Republic
| | - František Kovanda
- Department of Solid State Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
| |
Collapse
|
6
|
In-Situ H 2O 2 Cleaning for Fouling Control of Manganese-Doped Ceramic Membrane through Confined Catalytic Oxidation Inside Membrane. MEMBRANES 2021; 12:membranes12010021. [PMID: 35054547 PMCID: PMC8777854 DOI: 10.3390/membranes12010021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022]
Abstract
This work presents an effective approach for manganese-doped Al2O3 ceramic membrane (Mn-doped membrane) fouling control by in-situ confined H2O2 cleaning in wastewater treatment. An Mn-doped membrane with 0.7 atomic percent Mn doping in the membrane layer was used in a membrane bioreactor with the aim to improve the catalytic activity toward oxidation of foulants by H2O2. Backwashing with 1 mM H2O2 solution at a flux of 120 L/m2/h (LMH) for 1 min was determined to be the optimal mode for in-situ H2O2 cleaning, with confined H2O2 decomposition inside the membrane. The Mn-doped membrane with in-situ H2O2 cleaning demonstrated much better fouling mitigation efficiency than a pristine Al2O3 ceramic membrane (pristine membrane). With in-situ H2O2 cleaning, the transmembrane pressure increase (ΔTMP) of the Mn-doped membrane was 22.2 kPa after 24-h filtration, which was 40.5% lower than that of the pristine membrane (37.3 kPa). The enhanced fouling mitigation was attributed to Mn doping, in the Mn-doped membrane layer, that improved the membrane surface properties and confined the catalytic oxidation of foulants by H2O2 inside the membrane. Mn3+/Mn4+ redox couples in the Mn-doped membrane catalyzed H2O2 decomposition continuously to generate reactive oxygen species (ROS) (i.e., HO• and O21), which were likely to be confined in membrane pores and efficiently degraded organic foulants.
Collapse
|
7
|
Modification of Cobalt Oxide Electrochemically Deposited on Stainless Steel Meshes with Co-Mn Thin Films Prepared by Magnetron Sputtering: Effect of Preparation Method and Application to Ethanol Oxidation. Catalysts 2021. [DOI: 10.3390/catal11121453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Magnetron sputtering is an advantageous method for preparing catalysts supported on stainless steel meshes. Such catalysts are particularly suitable for processes carried out at high space velocities. One of these is the catalytic total oxidation of volatile organic compounds (VOC), economically feasible and environmentally friendly method of VOC abatement. The reactive radio frequency (RF) magnetron sputtering of Mn and Co + Mn mixtures in an oxidation Ar + O2 atmosphere was applied to form additional thin oxide coatings on cobalt oxide layers prepared by electrochemical deposition and heating on stainless steel meshes. Time of the RF magnetron sputtering was changed to obtain MnOx and CoMnOx coatings of various thickness (0.1–0.3 µm). The properties of the supported CoOx-MnOx and CoOx-CoMnOx catalysts were characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), temperature programmed reduction (H2-TPR), Fourier-transform infrared (FTIR) and Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The catalytic activity was investigated in the deep oxidation of ethanol, which was employed as a model VOC. According to the specific activities (amount of ethanol converted per unit mass of metal oxides per hour), the performance of CoOx-MnOx catalysts was higher than that of CoOx-CoMnOx ones. The catalysts with the smallest layer thickness (0.1 µm) showed the highest catalytic activity. Compared to the commercial pelletized Co-Mn-Al mixed oxide catalyst, the sputtered catalysts exhibited considerably higher (23–87 times) catalytic activity despite the more than 360–570 times lower content of the Co and Mn active components in the catalytic bed.
Collapse
|
8
|
Abstract
In this contribution, the three Mn-Zr catalysts with MnxZr1−xO2 hybrid phase were synthesized by two-step precipitation route (TP), conventional coprecipitation method (CP) and ball milling process (MP). The components, textural and redox properties of the Mn-Zr hybrid catalysts were studied via XRD, BET, XPS, HR-TEM, H2-TPR. Regarding the variation of synthesis routes, the TP and CP routes offer a more obvious advantage in the adjustment of the concentration of MnxZr1−xO2 solid solution compared to the MP process, which directly commands the content of Mn4+ and oxygen vacancy and lattice oxygen, and thereby leads to the enhanced mobility of reactive oxygen species and catalytic activity for toluene combustion. Moreover, the TP-Mn2Zr3 catalyst with the enriched exposure content of 51.4% for the defective (111) lattice plane of MnxZr1−xO2 exhibited higher catalytic activity and thermal stability for toluene oxidation than that of the CP-Mn2Zr3 sample with a value of 49.3%. This new observation will provide a new perspective on the design of bimetal catalysts with a higher VOCs combustion abatement.
Collapse
|
9
|
Lian JX, Carrasco J. On the formation and diffusion of oxygen vacancies in non-stoichiometric mixed Co 3-xMn xO 4spinel structures from first-principles calculations. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:444002. [PMID: 34348246 DOI: 10.1088/1361-648x/ac1aa5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Using first-principles simulations, we focus on the study of Co3O4-Mn3O4mixed oxides, which have recently shown alluring features as thermochemical heat storage materials. We provide fundamental atomistic-level insight into the thermodynamics and kinetics of a series of non-stoichiometric Co3-xMnxO4-y(0 ⩽x⩽ 3 andy= 0, 0.125, 0.250) bulk systems, by examining in detail the formation and diffusion processes of oxygen vacancies as a function of Mn content. We find a preference for the formation of vacancies atx= 1.5. And we predict a significant drop of diffusion barriers forx⩾ 1.5, when Mn atoms start to populate the spinel octahedral sites as Mn3+. Our results pave the way for better understanding the underlying mechanisms that govern oxygen vacancy dynamics in Co3-xMnxO4in general, and, in particular, the reversible reduction and re-oxidation reactions of these promising mixed oxides for thermal energy storage. Nevertheless, some discrepancies are found between our calculations on bulk models and recent experimental insights from the literature, which suggests that surface and finite size effects might play an important role in controlling the observed macroscopic behavior of these materials during reversible reduction and re-oxidation cycles.
Collapse
Affiliation(s)
- Jian Xiang Lian
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain
- Computational Chemistry for Clean Energy (CCCE), Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Javier Carrasco
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain
| |
Collapse
|
10
|
Yao L, Yang W, Niu Y, Liu J, Zhang S, Wu S, Deng Z, Ma L, Wang C, Cao Z. Comparison of the effects of cation and phosphorus doping in cobalt-based spinel oxides towards the oxygen evolution reaction. CrystEngComm 2021. [DOI: 10.1039/d0ce01771j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phosphorus incorporation further boosted the OER activity of cation-doped Co-based spinel oxides via remarkably tuning the oxygen vacancies, crystallinity and electrochemically active surface area on the surface.
Collapse
Affiliation(s)
- Lili Yao
- School and Hospital of Stomatology
- Wenzhou Medical University
- Wenzhou 325027
- PR China
| | - Wenxiu Yang
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- PR China
| | - Yongjian Niu
- Tianjin Key Laboratory of Advanced Functional Porous Materials and Center for Electron Microscopy
- Institute for New Energy Materials & Low-Carbon Technologies
- School of Materials Science and Engineering
- Tianjin University of Technology
- Tianjin 300384
| | - Jiming Liu
- School and Hospital of Stomatology
- Wenzhou Medical University
- Wenzhou 325027
- PR China
| | - Shun Zhang
- Tianjin Key Laboratory of Advanced Functional Porous Materials and Center for Electron Microscopy
- Institute for New Energy Materials & Low-Carbon Technologies
- School of Materials Science and Engineering
- Tianjin University of Technology
- Tianjin 300384
| | - Shuyi Wu
- School and Hospital of Stomatology
- Wenzhou Medical University
- Wenzhou 325027
- PR China
| | - Zhennan Deng
- School and Hospital of Stomatology
- Wenzhou Medical University
- Wenzhou 325027
- PR China
| | - Lin Ma
- College of Biotechnology
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- PR China
| | - Cheng Wang
- Tianjin Key Laboratory of Advanced Functional Porous Materials and Center for Electron Microscopy
- Institute for New Energy Materials & Low-Carbon Technologies
- School of Materials Science and Engineering
- Tianjin University of Technology
- Tianjin 300384
| | - Zhensheng Cao
- School and Hospital of Stomatology
- Wenzhou Medical University
- Wenzhou 325027
- PR China
| |
Collapse
|
11
|
|