1
|
Gao H, Li M, Wang Q, Liu T, Zhang X, Yang T, Xu M, Rao Z. A high-throughput dual system to screen polyphosphate kinase mutants for efficient ATP regeneration in L-theanine biocatalysis. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:122. [PMID: 37537682 PMCID: PMC10401862 DOI: 10.1186/s13068-023-02361-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/22/2023] [Indexed: 08/05/2023]
Abstract
ATP, an important cofactor, is involved in many biocatalytic reactions that require energy. Polyphosphate kinases (PPK) can provide energy for ATP-consuming reactions due to their cheap and readily available substrate polyphosphate. We determined the catalytic properties of PPK from different sources and found that PPK from Cytophaga hutchinsonii (ChPPK) had the best catalytic activity for the substrates ADP and polyP6. An extracellular-intracellular dual system was constructed to high-throughput screen for better catalytic activity of ChPPK mutants. Finally, the specific activity of ChPPKD82N-K103E mutant was increased by 4.3 times. Therefore, we focused on the production of L-theanine catalyzed by GMAS as a model of ATP regeneration. Supplying 150 mM ATP, GMAS enzyme could produce 16.8 ± 1.3 g/L L-theanine from 100 mM glutamate. When 5 mM ATP and 5 U/mL ChPPKD82N-K103E were added, the yield of L-theanine was 16.6 ± 0.79 g/L with the conversion rate of 95.6 ± 4.5% at 4 h. Subsequently, this system was scaled up to 200 mM and 400 mM glutamate, resulting in the yields of L-theanine for 32.3 ± 1.6 g/L and 62.7 ± 1.1 g/L, with the conversion rate of 92.8 ± 4.6% and 90.1 ± 1.6%, respectively. In addition, we also constructed an efficient ATP regeneration system from glutamate to glutamine, and 13.8 ± 0.2 g/L glutamine was obtained with the conversion rate of 94.4 ± 1.4% in 4 h after adding 6 U/ mL GS enzyme and 5 U/ mL ChPPKD82N-K103E, which further laid the foundation from glutamine to L-theanine catalyzed by GGT enzyme. This proved that giving the reaction an efficient ATP supply driven by the mutant enzyme enhanced the conversion rate of substrate to product and maximized the substrate value. This is a positively combination of high yield, high conversion rate and high economic value of enzyme catalysis. The mutant enzyme will further power the ATP-consuming biocatalytic reaction platform sustainably.
Collapse
Affiliation(s)
- Hui Gao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Mengxuan Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Qing Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Tingting Liu
- Yantai Shinho Enterprise Foods Co., Ltd., Yantai, 265503, China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| |
Collapse
|
2
|
Wang L, Jiao B, Shen Y, Du R, Yuan Q, Wang J. Co-Immobilization of Lactase and Glucose Isomerase on the Novel g-C 3N 4/CF Composite Carrier for Lactulose Production. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4290. [PMID: 36500913 PMCID: PMC9738431 DOI: 10.3390/nano12234290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
The g-C3N4/CF composite carrier was prepared by ultrasound-assisted maceration and high-temperature calcination. The enzyme immobilization using the g-C3N4/CF as the novel carrier to immobilize lactase and glucose isomerase was enhanced for lactulose production. The carbon fiber (CF) was mixed with melamine powder in the mass ratio of 1:8. The g-C3N4/CF composite carrier was obtained by calcination at 550 °C for 3 h. After the analysis of characteristics, the g-C3N4/CF was successfully composited with the carbon nitride and CF, displaying the improvement of co-immobilization efficiency with the positive effects on the stability of the enzyme. The immobilization efficiency of the co-immobilized enzyme was 37% by the novel carrier of g-C3N4/CF, with the enzyme activity of 13.89 U g-1 at 60 °C. The relative activities of co-immobilized enzymes maintained much more steadily at the wider pH and higher temperature than those of the free dual enzymes, respectively. In the multi-batches of lactulose production, the relative conversion rates in enzymes co-immobilized by the composite carrier were higher than that of the free enzymes during the first four batches, as well as maintaining about a 90% relative conversation rate after the sixth batch. This study provides a novel method for the application of g-C3N4/CF in the field of immobilizing enzymes for the production of lactulose.
Collapse
Affiliation(s)
- Le Wang
- National Engineering Laboratory for Wheat & Corn Further Processing, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Bingyu Jiao
- National Engineering Laboratory for Wheat & Corn Further Processing, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yan Shen
- National Engineering Laboratory for Wheat & Corn Further Processing, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Rong Du
- National Engineering Laboratory for Wheat & Corn Further Processing, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jinshui Wang
- National Engineering Laboratory for Wheat & Corn Further Processing, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
3
|
Polymer/Enzyme Composite Materials—Versatile Catalysts with Multiple Applications. CHEMISTRY 2022. [DOI: 10.3390/chemistry4040087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A significant interest was granted lately to enzymes, which are versatile catalysts characterized by natural origin, with high specificity and selectivity for particular substrates. Additionally, some enzymes are involved in the production of high-valuable products, such as antibiotics, while others are known for their ability to transform emerging contaminates, such as dyes and pesticides, to simpler molecules with a lower environmental impact. Nevertheless, the use of enzymes in industrial applications is limited by their reduced stability in extreme conditions and by their difficult recovery and reusability. Rationally, enzyme immobilization on organic or inorganic matrices proved to be one of the most successful innovative approaches to increase the stability of enzymatic catalysts. By the immobilization of enzymes on support materials, composite biocatalysts are obtained that pose an improved stability, preserving the enzymatic activity and some of the support material’s properties. Of high interest are the polymer/enzyme composites, which are obtained by the chemical or physical attachment of enzymes on polymer matrices. This review highlights some of the latest findings in the field of polymer/enzyme composites, classified according to the morphology of the resulting materials, following their most important applications.
Collapse
|
4
|
Bordewick S, Berger RG, Ersoy F. Co-Immobilization of RizA Variants with Acetate Kinase for the Production of Bioactive Arginyl Dipeptides. Molecules 2022; 27:molecules27144352. [PMID: 35889224 PMCID: PMC9321006 DOI: 10.3390/molecules27144352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 12/02/2022] Open
Abstract
The biocatalytic system comprised of RizA and acetate kinase (AckA) combines the specific synthesis of bioactive arginyl dipeptides with efficient ATP regeneration. Immobilization of this coupled enzyme system was performed and characterized in terms of activity, specificity and reusability of the immobilisates. Co-immobilization of RizA and AckA into a single immobilisate conferred no disadvantage in comparison to immobilization of only RizA, and a small addition of AckA (20:1) was sufficient for ATP regeneration. New variants of RizA were constructed by combining mutations to yield variants with increased biocatalytic activity and specificity. A selection of RizA variants were co-immobilized with AckA and used for the production of the salt-taste enhancers Arg-Ser and Arg-Ala and the antihypertensive Arg-Phe. The best variants yielded final dipeptide concentrations of 11.3 mM Arg-Ser (T81F_A158S) and 11.8 mM Arg-Phe (K83F_S156A), the latter of which represents a five-fold increase in comparison to the wild-type enzyme. T81F_A158S retained more than 50% activity for over 96 h and K83F_S156A for over 72 h. This study provides the first example of the successful co-immobilization of an l-amino acid ligase with an ATP-regenerating enzyme and paves the way towards a bioprocess for the production of bioactive dipeptides.
Collapse
|
5
|
Instantaneous synthesis and full characterization of organic-inorganic laccase-cobalt phosphate hybrid nanoflowers. Sci Rep 2022; 12:9297. [PMID: 35662266 PMCID: PMC9165545 DOI: 10.1038/s41598-022-13490-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/25/2022] [Indexed: 01/10/2023] Open
Abstract
A novel approach termed the "concentrated method" was developed for the instant fabrication of laccase@Co3(PO4)2•hybrid nanoflowers (HNFs). The constructed HNFs were obtained by optimizing the concentration of cobalt chloride and phosphate buffer to reach the highest activity recovery. The incorporation of 30 mM CoCl2 and 160 mM phosphate buffer (pH 7.4) resulted in a fast anisotropic growth of the nanomaterials. The purposed method did not involve harsh conditions and prolonged incubation of precursors, as the most reported approaches for the synthesis of HNFs. The catalytic efficiency of the immobilized and free laccase was 460 and 400 M−1S−1, respectively. Also, the enzymatic activity of the prepared biocatalyst was 113% of the free enzyme (0.5 U mL−1). The stability of the synthesized HNFs was enhanced by 400% at pH 6.5–9.5 and the elevated temperatures. The activity of laccase@Co3(PO4)2•HNFs declined to 50% of the initial value after 10 reusability cycles, indicating successful immobilization of the enzyme. Structural studies revealed a 32% increase in the α-helix content after hybridization with cobalt phosphate, which improved the activity and stability of the immobilized laccase. Furthermore, the fabricated HNFs exhibited a considerable ability to remove moxifloxacin as an emerging pollutant. The antibiotic (10 mg L−1) was removed by 24% and 75% after 24 h through adsorption and biodegradation, respectively. This study introduces a new method for synthesizing HNFs, which could be used for the fabrication of efficient biocatalysts, biosensors, and adsorbents for industrial, biomedical, and environmental applications.
Collapse
|
6
|
Wen J, Huang N, Wei Z, Yi D, Long Y, Zheng H. Metal-free colorimetric detection of pyrophosphate ions by the peroxidase-like activity of ATP. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120479. [PMID: 34655979 DOI: 10.1016/j.saa.2021.120479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/27/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Pyrophosphate (P2O74-, PPi) plays a vital role in ecological environment. Its elevated levels in water bodies can lead to eutrophication. Hence, its detection is extremely significant. Whereas most of the existing methods for the actual detection of PPi may cause environmental pollution or suffer from operational complexity. In this study, we introduced a sensitive and selective method for detecting PPi based on the fact that PPi can inhibit the peroxidase-like activity of adenosine 5'-triphosphate (ATP). This strategy not only eliminated the complexity of material preparation (ATP is commercialized), but also addressed the general need for metal ions in detecting PPi. The dynamic range of PPi detection was 1.0-200 μM and the detection limit was 74 nM. In addition, this strategy had been successfully applied to the determination of PPi in tap water and lake water. This work extends the application of natural biological small molecule ATP in the analysis and provides an innovative thought for the metal-free detection of PPi.
Collapse
Affiliation(s)
- Jiahui Wen
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, China
| | - Na Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, China
| | - Zixuan Wei
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, China
| | - Danyang Yi
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, China
| | - Yijuan Long
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, China
| | - Huzhi Zheng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
7
|
Deng Y, Ouyang J, Wang H, Yang C, Zhu Y, Wang J, Li D, Ma K. Magnetic nanoparticles prepared in natural deep eutectic solvent for enzyme immobilisation. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.1954168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Yuefeng Deng
- Department of Bioengineering, Nanjing University of Science & Technology, Nanjing, China
| | - Jie Ouyang
- Department of Bioengineering, Nanjing University of Science & Technology, Nanjing, China
| | - Haofan Wang
- Department of Bioengineering, Nanjing University of Science & Technology, Nanjing, China
| | - Chengli Yang
- Department of Bioengineering, Nanjing University of Science & Technology, Nanjing, China
| | - Yihui Zhu
- Department of Bioengineering, Nanjing University of Science & Technology, Nanjing, China
| | - Jianjun Wang
- Department of Bioengineering, Nanjing University of Science & Technology, Nanjing, China
| | - Dali Li
- Department of Bioengineering, Nanjing University of Science & Technology, Nanjing, China
| | - Kefeng Ma
- Department of Bioengineering, Nanjing University of Science & Technology, Nanjing, China
| |
Collapse
|
8
|
Ngin P, Cho K, Han O. Immobilization of Soybean Lipoxygenase on Nanoporous Rice Husk Silica by Adsorption: Retention of Enzyme Function and Catalytic Potential. Molecules 2021; 26:E291. [PMID: 33430075 PMCID: PMC7827180 DOI: 10.3390/molecules26020291] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 02/02/2023] Open
Abstract
Soybean lipoxygenase was immobilized on nanoporous rice husk silica particles by adsorption, and enzymatic parameters of the immobilized protein, including the efficiency of substrate binding and catalysis, kinetic and operational stability, and the kinetics of thermal inactivation, were investigated. The maximal adsorption efficiency of soybean lipoxygenase to the silica particles was 50%. The desorption kinetics of soybean lipoxygenase from the silica particles indicate that the silica-immobilized enzyme is more stable in an anionic buffer (sodium phosphate, pH 7.2) than in a cationic buffer (Tris-HCl, pH 7.2). The specific activity of immobilized lipoxygenase was 73% of the specific activity of soluble soybean lipoxygenase at a high concentration of substrate. The catalytic efficiency (kcat/Km) and the Michaelis-Menten constant (Km) of immobilized lipoxygenase were 21% and 49% of kcat/Km and Km of soluble soybean lipoxygenase, respectively, at a low concentration of substrate. The immobilized soybean lipoxygenase was relatively stable, as the enzyme specific activity was >90% of the initial activity after four assay cycles. The thermal stability of the immobilized lipoxygenase was higher than the thermal stability of soluble lipoxygenase, demonstrating 70% and 45% of its optimal specific activity, respectively, after incubation for 30 min at 45 °C. These results demonstrate that adsorption on nanoporous rice husk silica is a simple and rapid method for protein immobilization, and that adsorption may be a useful and facile method for the immobilization of many biologically important proteins of interest.
Collapse
Affiliation(s)
| | | | - Oksoo Han
- Department of Molecular Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Korea; (P.N.); (K.C.)
| |
Collapse
|
9
|
Make proper surfaces for immobilization of enzymes: Immobilization of lipase and α-amylase on modified Na-sepiolite. Int J Biol Macromol 2020; 164:1-12. [DOI: 10.1016/j.ijbiomac.2020.07.103] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 12/26/2022]
|