1
|
Preparation and characterization of M1-Nx-Cy based single atom catalysts for environmental applications. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
2
|
Engineering single-atom Pd sites in ZIF-derived porous Co3O4 for enhanced elementary mercury removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.123050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
3
|
Liu X, Bai Y, Chen S, Wu C, Gates ID, Huang T, Li W, Yang W, Gao Z, Yao J, Ding X. A descriptor for the structural stability of organic-inorganic hybrid perovskites based on binding mechanism in electronic structure. J Mol Model 2022; 28:80. [PMID: 35247076 DOI: 10.1007/s00894-022-05046-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 01/31/2022] [Indexed: 10/18/2022]
Abstract
The poor stability of organic-inorganic hybrid perovskites hinders its commercial application, which motivates a need for greater theoretical insight into its binding mechanism. To date, the binding mode of organic cation and anion inside organic-inorganic hybrid perovskites is still unclear and even contradictory. Therefore, in this work based on density functional theory (DFT), the binding mechanism between organic cation and anion was systematically investigated through electronic structure analysis including an examination of the electronic localization function (ELF), electron density difference (EDD), reduced density gradient (RDG), and energy decomposition analysis (EDA). The binding strength is mainly determined by Coulomb effect and orbital polarization. Based on the above analysis, a novel 2D linear regression descriptor that Eb = - 9.75Q2/R0 + 0.00053 V∙EHL - 6.11 with coefficient of determination R2 = 0.88 was proposed to evaluate the binding strength (the units for Q, R0, V, and EHL are |e|, Å, bohr3, and eV, respectively), revealing that larger Coulomb effect (Q2/R0), smaller volume of perovskite (V), and narrower energy difference (EHL) between the lowest unoccupied molecular orbital (LUMO) of organic cation and the highest occupied molecular orbital (HOMO) of anion correspond to the stronger binding strength, which guides the design of highly stable organic-inorganic hybrid perovskites.
Collapse
Affiliation(s)
- Xiaoshuo Liu
- Department of Power Engineering, School of Energy, Power, and Mechanical Engineering, North China Electric Power University, Baoding, 071000, China.,Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Yang Bai
- Department of Power Engineering, School of Energy, Power, and Mechanical Engineering, North China Electric Power University, Baoding, 071000, China
| | - Shengyi Chen
- Department of Power Engineering, School of Energy, Power, and Mechanical Engineering, North China Electric Power University, Baoding, 071000, China
| | - Chongchong Wu
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Ian D Gates
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Tianfang Huang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Wei Li
- School of Mathematics and Physics, North China Electric Power University, Beijing, 102206, China.,Institute of Clusters and Low Dimensional Nanomaterials, School of Mathematics and Physics, North China Electric Power University, Beijing, 102206, China
| | - Weijie Yang
- Department of Power Engineering, School of Energy, Power, and Mechanical Engineering, North China Electric Power University, Baoding, 071000, China
| | - Zhengyang Gao
- Department of Power Engineering, School of Energy, Power, and Mechanical Engineering, North China Electric Power University, Baoding, 071000, China.
| | - Jianxi Yao
- State Key Laboratory of Alternate Electrical Power System With Renewable Energy Sources, North China Electric Power University, Beijing, 102206, China. .,Beijing Key Laboratory of Energy Safety and Clean Utilization, North China Electric Power University, Beijing, 102206, China.
| | - Xunlei Ding
- School of Mathematics and Physics, North China Electric Power University, Beijing, 102206, China. .,Institute of Clusters and Low Dimensional Nanomaterials, School of Mathematics and Physics, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
4
|
Ran H, Wang H, Wu J, Zhu Y, Wu J, Shen H. Interference Effect of H 2O on Hg 0 Removal by a Mercury Sorbent in an Oxyfuel-Combustion Atmosphere. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hengyuan Ran
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Hui Wang
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jingmao Wu
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yiming Zhu
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jianfei Wu
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Haotian Shen
- Nanjing Institute of Future Energy System, Institute of Engineering Thermodynamics, Chinese Academy of Sciences, Nanjing 210000, China
| |
Collapse
|
5
|
Torad NL, El-Hosainy H, Esmat M, El-Kelany KE, Tahawy R, Na J, Ide Y, Fukata N, Chaikittisilp W, Hill JP, Zhang X, El-Kemary M, Yamauchi Y. Phenyl-Modified Carbon Nitride Quantum Nanoflakes for Ultra-Highly Selective Sensing of Formic Acid: A Combined Experimental by QCM and Density Functional Theory Study. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48595-48610. [PMID: 34633180 DOI: 10.1021/acsami.1c12196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Formic acid (HCOOH) is an important intermediate in chemical synthesis, pharmaceuticals, the food industry, and leather tanning and is considered to be an effective hydrogen storage molecule. Direct contact with its vapor and its inhalation lead to burns, nerve injury, and dermatosis. Thus, it is critical to establish efficient sensing materials and devices for the rapid detection of HCOOH. In the present study, we introduce a chemical sensor based on a quartz crystal microbalance (QCM) sensor capable of detecting trace amounts of HCOOH. This sensor is composed of colloidal phenyl-terminated carbon nitride (Ph-g-C3N4) quantum nanoflakes prepared using a facile solid-state method involving the supramolecular preorganization technology. In contrast to other synthetic methods of modified carbon nitride materials, this approach requires no hard templates, hazardous chemicals, or hydrothermal treatments. Comprehensive characterization and density functional theory (DFT) calculations revealed that the QCM sensor designed and prepared here exhibits enhanced detection sensitivity and selectivity for volatile HCOOH, which originates from chemical and hydrogen-bonding interactions between HCOOH and the surface of Ph-g-C3N4. According to DFT results, HCOOH is located close to the cavity of the Ph-g-C3N4 unit, with bonding to graphitic carbon and pyridinic nitrogen atoms of the nanoflake. The sensitivity of the Ph-g-C3N4-nanoflake-based QCM sensor was found to be the highest (128.99 Hz ppm-1) of the substances studied, with a limit of detection (LOD) of HCOOH down to a sub-ppm level of 80 ppb. This sensing technology based on phenyl-terminated attached-g-C3N4 nanoflakes establishes a simple, low-cost solution to improve the performance of QCM sensors for the effective discrimination of HCOOH, HCHO, and CH3COOH vapors using smart electronic noses.
Collapse
Affiliation(s)
- Nagy L Torad
- Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing 210016, China
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
- Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Hamza El-Hosainy
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Mohamed Esmat
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University (BSU), Beni-Suef 62511, Egypt
| | - Khaled E El-Kelany
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Rafat Tahawy
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Jongbeom Na
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yusuke Ide
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Naoki Fukata
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Watcharop Chaikittisilp
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Jonathan P Hill
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Xiaogang Zhang
- Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing 210016, China
| | - Maged El-Kemary
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
6
|
Zhuo HY, Zhang X, Liang JX, Yu Q, Xiao H, Li J. Theoretical Understandings of Graphene-based Metal Single-Atom Catalysts: Stability and Catalytic Performance. Chem Rev 2020; 120:12315-12341. [PMID: 33112608 DOI: 10.1021/acs.chemrev.0c00818] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Research on heterogeneous single-atom catalysts (SACs) has become an emerging frontier in catalysis science because of their advantages in high utilization of noble metals, precisely identified active sites, high selectivity, and tunable activity. Graphene, as a one-atom-thick two-dimensional carbon material with unique structural and electronic properties, has been reported to be a superb support for SACs. Herein, we provide an overview of recent progress in investigations of graphene-based SACs. Among the large number of publications, we will selectively focus on the stability of metal single-atoms (SAs) anchored on different sites of graphene support and the catalytic performances of graphene-based SACs for different chemical reactions, including thermocatalysis and electrocatalysis. We will summarize the fundamental understandings on the electronic structures and their intrinsic connection with catalytic properties of graphene-based SACs, and also provide a brief perspective on the future design of efficient SACs with graphene and graphene-like materials.
Collapse
Affiliation(s)
- Hong-Ying Zhuo
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China.,State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Beijing 102249, China
| | - Xin Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Beijing 102249, China
| | - Jin-Xia Liang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Qi Yu
- School of Materials Science and Engineering, Institute of Graphene at Shaanxi Key Laboratory of Catalysis, Shaanxi University of Technology, Hanzhong 723001, China
| | - Hai Xiao
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China.,Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|