1
|
Hu B, Shu R, Khairun HS, Tian Z, Wang C, Kumar Gupta N. Methanol Steam Reforming for Hydrogen Production over Ni-Based Catalysts: State-Of-The-Art Review and Future Prospects. Chem Asian J 2024; 19:e202400217. [PMID: 38752326 DOI: 10.1002/asia.202400217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/14/2024] [Indexed: 06/30/2024]
Abstract
With increasing global emphasis on environmental sustainability, the reliance on traditional energy sources such as coal, natural gas, and oil are encountering significant challenges. H2, known for its high energy content and pollution-free usage, emerges as a promising alternative. However, despite the great potential of H2, approximately 95 % of hydrogen production still depends on non-renewable resources. Hence, the shift towards producing H2 from renewable sources, particularly through methods like steam reforming of methanol - a renewable resource - represents a beacon of hope for advancing sustainable energy practices. This review comprehensively examines recent advancements in efficient H2 production using Ni-based catalysts in methanol steam reforming (MSR) and proposes the future prospects. Firstly, the fundamental principles of MSR technology and the significance in clean energy generation are elucidated. Subsequently, the design, synthesis techniques, and optimization strategies for enhancing the catalytic performance of Ni-based catalysts are discussed. Through the analysis of various catalyst compositions, structural adjustments, surface active sites, and modification methods, the review uncovers effective approaches for boosting the activity and durability of MSR reactions. Moreover, the review investigates the causes of deactivation in Ni-based catalysts during MSR reactions and proposes strategies for extending catalyst lifespan through fine design and optimization of operation parameters. Lastly, this review outlines the current research challenges and anticipates the future trends and potential applications of Ni-based catalysts in MSR hydrogen production. By offering a comprehensive critical analysis, this review serves as a valuable reference to enhance MSR hydrogen production efficiency and catalyst performance.
Collapse
Affiliation(s)
- Bin Hu
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Riyang Shu
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Hafila S Khairun
- Centre for Sustainable Technologies, Indian Institute of Science, Gulmohar Marg, Mathikere, 560012 Bengaluru, India
| | - Zhipeng Tian
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Chao Wang
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Navneet Kumar Gupta
- Centre for Sustainable Technologies, Indian Institute of Science, Gulmohar Marg, Mathikere, 560012 Bengaluru, India
| |
Collapse
|
2
|
Bhargava A, Shelke S, Dilkash M, Chaubal-Durve NS, Patil PD, Nadar SS, Marghade D, Tiwari MS. A comprehensive review on catalytic etherification of glycerol to value-added products. REV CHEM ENG 2022. [DOI: 10.1515/revce-2021-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The increase in biodiesel production has resulted in the oversupply of glycerol into the market. Purified and processed glycerol has found many direct applications in pharmaceuticals, food, etc. However, the cost of processing and market value of processed glycerol has driven the research of direct utilization of crude glycerol to industrially essential chemicals. Various methods and research have been devoted to using glycerol to produce value-added products separately. Glycerol can undergo several transformation reactions like hydrogenation, oxidation, alcoholysis, and etherification. Etherification of glycerol can be divided into three main reactions: self-etherification, using alcohol, and olefins and these products have vast applications such as fuel additives, plasticizer, etc. The current review presents a comprehensive summary of glycerol etherification to value-added products and their applications. The catalytic system developed along with reaction conditions and the factors responsible for the better activity is also discussed. Overall, the review presents a detailed discussion on the catalytic system developed, the utilization of different alcohols and olefins, and the application of products. Moreover, the environmental and economic aspects of the etherification of glycerol via various conversion routes while assessing the process parameters needs to be tackled to attain wider adoption of the process.
Collapse
Affiliation(s)
- Anuj Bhargava
- Department of Chemical Engineering , SVKM’S NMIMS Mukesh Patel School of Technology Management & Engineering , Mumbai , Maharashtra 400056 , India
| | - Shraddha Shelke
- Department of Chemical Engineering , SVKM’S NMIMS Mukesh Patel School of Technology Management & Engineering , Mumbai , Maharashtra 400056 , India
| | - Mohammed Dilkash
- Department of Chemical Engineering , SVKM’S NMIMS Mukesh Patel School of Technology Management & Engineering , Mumbai , Maharashtra 400056 , India
| | - Nivedita S. Chaubal-Durve
- Department of Basic Science & Humanities , SVKM’S NMIMS Mukesh Patel School of Technology Management & Engineering , Mumbai , Maharashtra 400056 , India
| | - Pravin D. Patil
- Department of Basic Science & Humanities , SVKM’S NMIMS Mukesh Patel School of Technology Management & Engineering , Mumbai , Maharashtra 400056 , India
| | - Shamraja S. Nadar
- Department of Chemical Engineering , Institute of Chemical Technology , Mumbai , India
| | - Deepali Marghade
- Department of Applied Chemistry , Priyadarshini Institute of Engineering , Nagpur 440019 , India
| | - Manishkumar S. Tiwari
- Department of Chemical Engineering , SVKM’S NMIMS Mukesh Patel School of Technology Management & Engineering , Mumbai , Maharashtra 400056 , India
| |
Collapse
|
3
|
Mascitti A, Scioli G, Tonucci L, Canale V, Germani R, Di Profio P, d’Alessandro N. First Evidence of the Double-Bond Formation by Deoxydehydration of Glycerol and 1,2-Propanediol in Ionic Liquids. ACS OMEGA 2022; 7:27980-27990. [PMID: 35990467 PMCID: PMC9386840 DOI: 10.1021/acsomega.2c01803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Deoxydehydration (DODH) reaction of glycerol (GL) and 1,2-propanediol (1,2-PD), in ionic liquids (ILs), catalyzed by methyltrioxorhenium (MTO) and Re2O7, was studied in detail. To better understand the ability of ILs to improve the catalytic performance of the rhenium catalyst, several experiments, employing eight different cations and two different anions, were carried out. Among the anions, bis(trifluoromethylsulfonyl)imide (TFSI) appears to be more appropriate than PF6 -, for its relatively lower volatility of the resulting IL. Regarding the choice of the most appropriate cation, the presence of a single aromatic ring seems to be a necessary requirement for a satisfying and convenient reactivity. With the aim to extend the recyclability of the catalyst, experiments involving the readdition of polyol to the terminal reaction mixture were carried out. Worthy of interest is the fact that the presence of the IL prevents the inertization process of the catalyst, allowing us to obtain the alkene also after a readdition of fresh polyol.
Collapse
Affiliation(s)
- Andrea Mascitti
- Department
of Engineering and Geology, “G. d’Annunzio”
University of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Giuseppe Scioli
- Department
of Engineering and Geology, “G. d’Annunzio”
University of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Lucia Tonucci
- Department
of Philosophical, Educational and Economic Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy
| | - Valentino Canale
- Department
of Pharmacy, “G. d’Annunzio”
University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy
| | - Raimondo Germani
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di sotto, 06123 Perugia, Italy
| | - Pietro Di Profio
- Department
of Pharmacy, “G. d’Annunzio”
University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy
| | - Nicola d’Alessandro
- Department
of Engineering and Geology, “G. d’Annunzio”
University of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| |
Collapse
|
4
|
Aqueous-Phase Glycerol Conversion over Ni-Based Catalysts Synthesized by Nanocasting. Catalysts 2022. [DOI: 10.3390/catal12060668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A morphological strategy consisting of nanocasting synthesis of nickel aluminate spinel precursor was addressed. Two nanocasted catalysts were synthesized involving different template-removal procedures (i.e., Teflon-assisted calcination vs. NaOH washing) for spinel recovery. As a reference, spinel NiAl2O4 supported by SBA-15 and bare nickel aluminate spinel were selected. The obtained solids were characterized in detail, examining their textural, acid–base, structural and compositional characteristics, either in the calcined or reduced forms. The as-obtained catalysts’ performance was evaluated in the aqueous-phase reforming of glycerol at 235 °C and 35 bar. Exhausted samples were also characterized to enlighten changes in catalyst properties during the aqueous-phase reaction. NiAl/SBA-15 and NiAl-NCF catalyst showed very poor catalytic performance for the glycerol transformation. NiAl-NCN catalyst presented improved activity with respect to NiAl, with a 20% higher hydrogen production rate but, as a drawback, higher methane formation for a whole range of glycerol conversions. Exhausted catalyst indicated nickel oxidized in liquid phase reaction.
Collapse
|
5
|
Selective oxidation of glycerol over different shaped WO3 supported Pt NPs. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.111545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Md Rahim SAN, Lee CS, Aroua MK, Wan Daud WMA, Abnisa F, Cognet P, Pérès Y. Glycerol Electrocatalytic Reduction Using an Activated Carbon Composite Electrode: Understanding the Reaction Mechanisms and an Optimization Study. Front Chem 2022; 10:845614. [PMID: 35281562 PMCID: PMC8914049 DOI: 10.3389/fchem.2022.845614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/18/2022] [Indexed: 11/24/2022] Open
Abstract
The conversion of biomass-derived glycerol into valuable products is an alternative strategy for alleviating energy scarcity and environmental issues. The authors recently uncovered an activated carbon composite electrode with an Amberlyst-15 mediator able to generate 1,2-propanediol, diethylene glycol, and acetol via a glycerol electrocatalytic reduction. However, less attention to mechanistic insights makes its application to industrial processes challenging. Herein, two proposed intermediates, acetol and ethylene glycol, were employed as the feedstocks to fill the gap in the mechanistic understanding of the reactions. The results discovered the importance of acetol in producing 1,2-propanediol and concluded the glycerol electrocatalytic reduction process has a two-step reduction pathway, where glycerol was initially reduced to acetol and consecutively hydrogenated to 1,2-propanediol. At 353 K and 0.28 A/cm2, 1,2-propanediol selectivity achieved 77% (with 59.8 C mol% yield) after 7 h of acetol (3.0 mol/L) electrolysis. Finally, the influences of the temperature, glycerol initial concentration, and current density on the glycerol electrocatalytic reduction were evaluated. The initial step involved the C-O and C-C bonds cleavage in glycerol plays a crucial role in producing either acetol or ethylene glycol intermediate. This was controlled by the temperature, which low to moderate value is needed to maintain a selective acetol-1,2-propanediol route. Additionally, medium glycerol initial concentration reduced the hydrogen formation and indirectly improved 1,2-propanediol yield. A mild current density raised the conversion rate and minimized the growth of intermediates. At 353 K and 0.21 A/cm2, glycerol (3.0 mol/L) electrocatalytic reduction to 1,2-propanediol reached the maximum yield of 42.3 C mol%.
Collapse
Affiliation(s)
| | - Ching Shya Lee
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohamed Kheireddine Aroua
- Research Centre for Carbon Dioxide Capture and Utilization (CCDCU), School of Engineering and Technology, Sunway University, Bandar Sunway, Petaling Jaya, Malaysia
- Department of Engineering, Lancaster University, Lancaster, United Kingdom
- Sunway Materials Smart Science & Engineering Research Cluster (SMS2E), Sunway University, Bandar Sunway, Malaysia
| | - Wan Mohd Ashri Wan Daud
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Faisal Abnisa
- Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Patrick Cognet
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, Toulouse, France
| | - Yolande Pérès
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, Toulouse, France
| |
Collapse
|
7
|
Numpilai T, Cheng CK, Seubsai A, Faungnawakij K, Limtrakul J, Witoon T. Sustainable utilization of waste glycerol for 1,3-propanediol production over Pt/WO x/Al 2O 3 catalysts: Effects of catalyst pore sizes and optimization of synthesis conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:116029. [PMID: 33248828 DOI: 10.1016/j.envpol.2020.116029] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 06/12/2023]
Abstract
Recycling of waste glycerol derived from biodiesel production to high value-added chemicals is essential for sustainable development of Bio-Circular-Green Economy. This work studied the conversion of glycerol to 1,3-propanediol over Pt/WOx/Al2O3 catalysts, pointing out the impacts of catalyst pore sizes and operating conditions for maximizing the yield of 1,3-propanediol. The results suggested that both pore confinement effect and number of available reactive metals as well as operating conditions determined the glycerol conversion and 1,3-propanediol selectivity. The small-pore 5Pt/WOx/S-Al2O3 catalyst (6.1 nm) gave a higher Pt dispersion (32.0%), a smaller Pt crystallite size (3.5 nm) and a higher number of acidity (0.47 mmol NH3 g-1) compared to those of the large-pore 5Pt/WOx/L-Al2O3 catalyst (40.3 nm). However, glycerol conversion and 1,3-propanediol yield over the small-pore 5Pt/WOx/S-Al2O3 catalyst were significantly lower than those of the large-pore Pt/WOx/L-Al2O3 catalyst, suggesting that the diffusional restriction within the small-pore catalyst suppressed transportation of molecules to expose catalytic active sites, favoring the excessive hydrogenolysis of 1,3-propanediol, giving rise to undesirable products. The best 1,3-propanediol yield of 32.8% at 78% glycerol conversion were achieved over the 5Pt/WOx/L-Al2O3 under optimal reaction condition of 220 °C, 6 MPa, 5 h reaction time and amount of catalyst to glycerol ratio of 0.25 g mL-1. However, the 1,3-propanediol yield and glycerol conversion decreased to 19.6% and 51% after the 4th reaction-regeneration which were attributed to the carbonaceous deposition and the agglomeration of Pt particles.
Collapse
Affiliation(s)
- Thanapha Numpilai
- Center of Excellence on Petrochemical and Materials Technology, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok, 10900, Thailand; Research Network of NANOTEC-KU on NanoCatalysts and NanoMaterials for Sustainable Energy and Environment, Kasetsart University, Bangkok, 10900, Thailand
| | - Chin Kui Cheng
- Department of Chemical Engineering, College of Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Anusorn Seubsai
- Center of Excellence on Petrochemical and Materials Technology, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok, 10900, Thailand; Research Network of NANOTEC-KU on NanoCatalysts and NanoMaterials for Sustainable Energy and Environment, Kasetsart University, Bangkok, 10900, Thailand
| | - Kajornsak Faungnawakij
- Research Network of NANOTEC-KU on NanoCatalysts and NanoMaterials for Sustainable Energy and Environment, Kasetsart University, Bangkok, 10900, Thailand; National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Jumras Limtrakul
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Thongthai Witoon
- Center of Excellence on Petrochemical and Materials Technology, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok, 10900, Thailand; Research Network of NANOTEC-KU on NanoCatalysts and NanoMaterials for Sustainable Energy and Environment, Kasetsart University, Bangkok, 10900, Thailand; Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand.
| |
Collapse
|
8
|
Abstract
Once a biorefinery is ready to operate, the main processed materials need to be completely evaluated in terms of many different factors, including disposal regulations, technological limitations of installation, the market, and other societal considerations. In biorefinery, glycerol is the main by-product, representing around 10% of biodiesel production. In the last few decades, the large-scale production of biodiesel and glycerol has promoted research on a wide range of strategies in an attempt to valorize this by-product, with its transformation into added value chemicals being the strategy that exhibits the most promising route. Among them, C3 compounds obtained from routes such as hydrogenation, oxidation, esterification, etc. represent an alternative to petroleum-based routes for chemicals such as acrolein, propanediols, or carboxylic acids of interest for the polymer industry. Another widely studied and developed strategy includes processes such as reforming or pyrolysis for energy, clean fuels, and materials such as activated carbon. This review covers recent advances in catalysts used in the most promising strategies considering both chemicals and energy or fuel obtention. Due to the large variety in biorefinery industries, several potential emergent valorization routes are briefly summarized.
Collapse
|