1
|
Chen B, Yang X, Xu Y, Hu S, Zeng X, Liu Y, Tan KB, Huang J, Zhan G. Semi-hydrogenation of α,β-unsaturated aldehydes over sandwich-structured nanocatalysts prepared by phase transformation of thin-film Al 2O 3 to Al-TCPP. NANOSCALE 2022; 14:15749-15759. [PMID: 36226736 DOI: 10.1039/d2nr04474a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The semi-hydrogenation of α,β-unsaturated aldehydes to the desired unsaturated alcohols with both high conversion and high selectivity remains a big challenge. Herein, we designed a sandwich-structured nanocatalyst for the highly selective hydrogenation of various α,β-unsaturated aldehydes (e.g., cinnamaldehyde, furfural, crotonaldehyde, and 3-methyl-2-butenal) to the targeted unsaturated alcohols. Highly accessible platinum nanoparticles were sandwiched between a metal-organic framework (MOF) core (i.e., MIL-88B(Fe)) and a MOF shell (i.e., Al-TCPP). In particular, the growth of the Al-TCPP shell was achieved by atomic layer deposition (ALD) of thin-film Al2O3 followed by phase transformation with a tetrakis(4-carboxyphenyl)porphyrin (H4TCPP) linker. The thickness of the Al-TCPP shell can be finely controlled by adjusting the cycle number of alumina ALD and the concentration of the H4TCPP linker during the phase transformation of Al2O3 to Al-TCPP. It was proven that the permeable MOF shells could serve as selectivity regulators for the activation of the CO bonds in α,β-unsaturated aldehydes (in preference to the CC bonds), leading to higher selectivity towards unsaturated alcohols as compared to the conventional surface supported Pt catalysts. Mechanistic insights showed that the enhanced catalytic performance was attributed to (i) the modified electronic state of sandwiched Pt nanoparticles by the two MOF layers and (ii) the steric hindrance effect on substrate diffusion through the sandwich-structured catalysts.
Collapse
Affiliation(s)
- Bin Chen
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Blvd., Xiamen, Fujian, 361021, P. R. China.
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Xiamen, Fujian 361005, P. R. China.
| | - Xin Yang
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Blvd., Xiamen, Fujian, 361021, P. R. China.
| | - Yinan Xu
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Siyuan Hu
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Blvd., Xiamen, Fujian, 361021, P. R. China.
| | - Xiaoli Zeng
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Blvd., Xiamen, Fujian, 361021, P. R. China.
| | - Yiping Liu
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Blvd., Xiamen, Fujian, 361021, P. R. China.
| | - Kok Bing Tan
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Xiamen, Fujian 361005, P. R. China.
| | - Jiale Huang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Xiamen, Fujian 361005, P. R. China.
| | - Guowu Zhan
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Blvd., Xiamen, Fujian, 361021, P. R. China.
| |
Collapse
|
3
|
Huang Z, Yuan Y, Song M, Hao Z, Xiao J, Cai D, Ibrahim AR, Zhan G. CO2 hydrogenation over mesoporous Ni-Pt/SiO2 nanorod catalysts: Determining CH4/CO selectivity by surface ratio of Ni/Pt. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117106] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
4
|
Zeng X, Chen B, Song Y, Lin X, Zhou SF, Zhan G. Fabrication of Versatile Hollow Metal-Organic Framework Nanoplatforms for Folate-Targeted and Combined Cancer Imaging and Therapy. ACS APPLIED BIO MATERIALS 2021; 4:6417-6429. [PMID: 35006919 DOI: 10.1021/acsabm.1c00603] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metal-organic frameworks (MOFs) have received extensive attention in the field of biomedicine, particularly serving as multifunctional theranostic nanoplatforms by integrating chemodrugs, imaging agents, and targeting agents. Herein, we report a facile strategy for the fabrication of a hollow and monodisperse MOF (denoted hMIL-88B(Fe)@ZIF-8) consisting of ZIF-8 nanoparticles loaded on the external shell of hollow MIL-88B(Fe). In particular, the hybrid hollow MOF was constructed by partially etching spindlelike MIL-88B(Fe) nanoparticles with 2-methylimidazole in the presence of zinc ions. The obtained hMIL-88B(Fe)@ZIF-8 was then used as a drug/cargo delivery vehicle for loading doxorubicin (DOX), manganese oxide (MnOx) nanoparticles, and folic acid (FA), forming a multifunctional nanoplatform (denoted hM@ZMDF). Importantly, the resulting hM@ZMDF exhibited a specific targeting property for the FA receptor-overexpressed cancer cells (MCF-7 and HepG-2 cells) and then it unloaded DOX and Fe3+ in the tumor microenvironment. Consequently, DOX played dual roles as a chemotherapeutic drug and a fluorescent imaging agent. Also, the released Fe3+ could mediate the Fenton reaction and intracellularly generate toxic hydroxyl radicals in the presence of high glutathione in cancer cells. In addition, MnOx nanoparticles could participate in magnetic resonance imaging. Therefore, the versatile hM@ZMDF nanoplatforms have great potential for smart cancer therapy.
Collapse
Affiliation(s)
- Xiaoli Zeng
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian 361021, P. R. China
| | - Bin Chen
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian 361021, P. R. China
| | - Yibo Song
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian 361021, P. R. China
| | - Xiaofeng Lin
- Juwenlee (Fujian) Cosmetics Co., Ltd., 21 Longxiang Road, Taiwanese Investment Area, Zhangzhou, Fujian 363107, P. R. China
| | - Shu-Feng Zhou
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian 361021, P. R. China
| | - Guowu Zhan
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian 361021, P. R. China
| |
Collapse
|