1
|
Moutaouakil M, Roby O, Tighadouini S, Cherif A, El Aatiaoui A, Saddik R. Investigating catalytic pathways: a comparative review of homogeneous and heterogeneous catalysis for 3-aroylimidazo[1,2-a]pyridine synthesis. Mol Divers 2024; 28:3479-3495. [PMID: 38042761 DOI: 10.1007/s11030-023-10765-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 11/03/2023] [Indexed: 12/04/2023]
Abstract
3-aroylimidazo[1,2-a]pyridines represent a class of derivatives in the imidazo[1,2-a]pyridine family known for their important biological and pharmaceutical activities. Consequently, various methodologies have been designed to simplify the synthesis of this structure, with an emphasis on the use of cost-effective starting materials and environmentally friendly protocols. All the methods developed in recent years (from 2016 to 2023) rely on homogeneous or heterogeneous catalysts. Therefore, we aim to perform a comparative analysis between these two approaches, elucidating their respective advantages and limitations. The first part of this work focuses on techniques employing homogeneous catalysts, followed by the next section devoted to heterogeneous catalysts. This comprehensive review should be of substantial interest to researchers in the fields of organic and medicinal chemistry, as it provides a valuable resource for their research.
Collapse
Affiliation(s)
- Mohamed Moutaouakil
- Laboratory of Organic Synthesis, Extraction, and Valorization, Faculty of Sciences Ain Chock, Hassan II University, 20000, Casablanca, Morocco.
| | - Othmane Roby
- Laboratory of Organic Synthesis, Extraction, and Valorization, Faculty of Sciences Ain Chock, Hassan II University, 20000, Casablanca, Morocco
| | - Said Tighadouini
- Laboratory of Organic Synthesis, Extraction, and Valorization, Faculty of Sciences Ain Chock, Hassan II University, 20000, Casablanca, Morocco
| | - Abdelmjid Cherif
- Laboratory of Materials Engineering for Environment and Valorization, Faculty of Sciences Ain Chock, Hassan II University, 20000, Casablanca, Morocco
| | - Abdelmalik El Aatiaoui
- Laboratory of Molecular Chemistry, Materials and Environment (LCM2E), Department of Chemistry, Multidisciplinary Faculty of Nador, Mohamed I University, Nador, Morocco
| | - Rafik Saddik
- Laboratory of Organic Synthesis, Extraction, and Valorization, Faculty of Sciences Ain Chock, Hassan II University, 20000, Casablanca, Morocco
| |
Collapse
|
2
|
Gómez Fernández MA, Hoffmann N. Photocatalytic Transformation of Biomass and Biomass Derived Compounds-Application to Organic Synthesis. Molecules 2023; 28:4746. [PMID: 37375301 PMCID: PMC10301391 DOI: 10.3390/molecules28124746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Biomass and biomass-derived compounds have become an important alternative feedstock for chemical industry. They may replace fossil feedstocks such as mineral oil and related platform chemicals. These compounds may also be transformed conveniently into new innovative products for the medicinal or the agrochemical domain. The production of cosmetics or surfactants as well as materials for different applications are examples for other domains where new platform chemicals obtained from biomass can be used. Photochemical and especially photocatalytic reactions have recently been recognized as being important tools of organic chemistry as they make compounds or compound families available that cannot be or are difficultly synthesized with conventional methods of organic synthesis. The present review gives a short overview with selected examples on photocatalytic reactions of biopolymers, carbohydrates, fatty acids and some biomass-derived platform chemicals such as furans or levoglucosenone. In this article, the focus is on application to organic synthesis.
Collapse
Affiliation(s)
| | - Norbert Hoffmann
- CNRS, Université de Reims Champagne-Ardenne, ICMR, Equipe de Photochimie, UFR Sciences, B.P. 1039, 51687 Reims, France
| |
Collapse
|
3
|
Du X, Peng Y, Albero J, Li D, Hu C, García H. Synthetic Fuels from Biomass: Photocatalytic Hydrodecarboxylation of Octanoic Acid by Ni Nanoparticles Deposited on TiO 2. CHEMSUSCHEM 2022; 15:e202102107. [PMID: 34841693 DOI: 10.1002/cssc.202102107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Decarboxylation of low-value fatty acids from biomass is a simple process to produce synthetic fuels suitable to be blended with gasoline or diesel. The present study reports the photocatalytic decarboxylation of octanoic acid in the presence of H2 by a series of modified TiO2 to form mixtures of n-heptane and tetradecane as major products in variable proportions, depending on the photocatalyst and the reaction conditions. It was found that the photocatalytic activity increases upon an optimal reductive NaBH4 treatment, presumably by generation of surface oxygen vacancies and by the deposition of Ni nanoparticles in the appropriate loading. Under the optimized conditions, an almost complete octanoic acid conversion and a combined selectivity to n-heptane and tetradecane over 80 % were reached at 10 h of UV/Vis light irradiation with a 300 W Xe lamp. No changes in the photocatalytic performance were observed for six consecutive runs. The present results illustrate the possibility that photocatalytic decarboxylation offers for the transformation of biomass into synthetic fuels under mild conditions.
Collapse
Affiliation(s)
- Xiangze Du
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
- Instituto Universitario de Tecnología Química, Consejo Superior de Investigaciones Científicas, Universitat Politecnica de Valencia, Av. De los Naranjos s/n, 46022, Valencia, Spain
| | - Yong Peng
- Instituto Universitario de Tecnología Química, Consejo Superior de Investigaciones Científicas, Universitat Politecnica de Valencia, Av. De los Naranjos s/n, 46022, Valencia, Spain
| | - Josep Albero
- Instituto Universitario de Tecnología Química, Consejo Superior de Investigaciones Científicas, Universitat Politecnica de Valencia, Av. De los Naranjos s/n, 46022, Valencia, Spain
| | - Dan Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Changwei Hu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Hermenegildo García
- Instituto Universitario de Tecnología Química, Consejo Superior de Investigaciones Científicas, Universitat Politecnica de Valencia, Av. De los Naranjos s/n, 46022, Valencia, Spain
| |
Collapse
|
4
|
da Costa AAF, Pires LHDO, Padrón DR, Balu AM, Rocha Filho GND, Luque R, Nascimento LASD. Recent advances on catalytic deoxygenation of residues for bio-oil production: An overview. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
5
|
Influence of synthesized catalyst on the pyrolytic conversion of waste oils into renewable biofuel: Synthesis and performance. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
6
|
Recent advances in the catalytic deoxygenation of plant oils and prototypical fatty acid models compounds: Catalysis, process, and kinetics. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|