1
|
Silva ALR, León GP, Lukeš V, Klein E, Ribeiro da Silva MDMC. Thermodynamic Properties of γ- and δ-Lactones: Exploring Alkyl Chain Length Effect and Ring-Opening Reactions for Green Chemistry Applications. Molecules 2025; 30:399. [PMID: 39860268 PMCID: PMC11767462 DOI: 10.3390/molecules30020399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
An extensive thermochemical study of γ-undecanolactone and δ-undecanolactone has been developed using two complementary calorimetric techniques. The combustion energy of each compound was determined by static-bomb combustion calorimetry, and the corresponding enthalpy of vaporization was determined by high-temperature Calvet microcalorimetry, in which both properties of each compound are reported at T = 298.15 K. The standard molar enthalpy of formation in the gas phase of each lactone was derived by the combination of the experimental results. Additionally, high-level computational calculations were carried out, using composite ab initio G4 and G4(MP2) methods, as well as DFT M06-2X/6-311++G(d,p) approach, to estimate the corresponding enthalpy of formation in the gas phase. The experimental and computational results are in good agreement. The G4 and G4(MP2) methods show the best accordance with experimentally determined gas phase enthalpies of formation. The experimental results are discussed in terms of structural contributions to the energetic properties of the lactones studied, as well as to other alkylated γ- and δ-lactones, and empirical correlations are suggested for the estimation of the standard molar enthalpies of formation, at T = 298.15 K, for other alkylated γ- and δ-lactones, both in the liquid and gaseous phases, as well as for the respective enthalpies of vaporization. Finally, the thermochemistry of individual steps of lactone ring opening and successive decarboxylation mechanism, including the identification of transition states, was studied using the M06-2X/6-311++G(d,p) approach.
Collapse
Affiliation(s)
- Ana L. R. Silva
- Centro de Investigação em Química (CIQUP), Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal; (G.P.L.); (M.D.M.C.R.d.S.)
| | - Gastón P. León
- Centro de Investigação em Química (CIQUP), Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal; (G.P.L.); (M.D.M.C.R.d.S.)
| | - Vladimír Lukeš
- Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia;
| | - Erik Klein
- Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia;
| | - Maria D. M. C. Ribeiro da Silva
- Centro de Investigação em Química (CIQUP), Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal; (G.P.L.); (M.D.M.C.R.d.S.)
| |
Collapse
|
2
|
Sun Q, Feng S, Li G, Qi Y, Hu C. Influence of Different Treatments on the Structure and Conversion of Silicon Species in Rice Straw to Tetraethyl Orthosilicate (TEOS). ChemistryOpen 2023; 12:e202300111. [PMID: 37551028 PMCID: PMC10407258 DOI: 10.1002/open.202300111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/15/2023] [Indexed: 08/09/2023] Open
Abstract
The production of tetraethyl orthosilicate (TEOS) from biomass provides a new way for TEOS production and biomass valorization. In this study, rice straw was treated using different fractionation methods, and the content, state, and reactivity of Si in the treated samples were investigated. It was found that acid treatment and ethanol extraction kept most Si in the biomass, while alkali treatment caused significant Si loss. Si was mainly present in the SiOx , Si-O-C, and Si-O-Si states in the surface of raw rice straw, cellulose and Klason lignin. The results showed that the Si-O-Si state in rice straw was beneficial for the formation of TEOS. The removal of lipids from rice straw facilitated the production of TEOS, giving the highest TEOS yield of 76.2 %. In contrast, the production of TEOS from other samples became difficult; the simultaneous conversion of the three organic components of rice straw also facilitated the production of TEOS.
Collapse
Affiliation(s)
- Qianxin Sun
- Ministry of EducationCollege of ChemistrySichuan UniversityChengduSichuan610064P. R. China
| | - Shanshan Feng
- Ministry of EducationCollege of ChemistrySichuan UniversityChengduSichuan610064P. R. China
| | - Guiying Li
- Ministry of EducationCollege of ChemistrySichuan UniversityChengduSichuan610064P. R. China
| | - Yue Qi
- Ministry of EducationCollege of ChemistrySichuan UniversityChengduSichuan610064P. R. China
| | - Changwei Hu
- Ministry of EducationCollege of ChemistrySichuan UniversityChengduSichuan610064P. R. China
| |
Collapse
|
3
|
Wu Z, Sun T, Li Z, Li C. Si-Modified Cs/Al 2O 3 for Aldol Condensation of Methyl Acetate with Formaldehyde to Methyl Acrylate by Chemical Liquid Deposition. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Zhenyu Wu
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
- Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing100190, People’s Republic of China
| | - Taolue Sun
- Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing100190, People’s Republic of China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Zengxi Li
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
- Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing100190, People’s Republic of China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province256606, People’s Republic of China
| | - Chunshan Li
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing100190, People’s Republic of China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
4
|
Dutta S. Greening the Synthesis of Biorenewable Fuels and Chemicals by Stoichiometric Reagentless Organic Transformations. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Saikat Dutta
- Department of Chemistry, National Institute of Technology Karnataka (NITK), Surathkal, Mangaluru-575025, Karnataka, India
| |
Collapse
|
5
|
Wang X, Yu Z, Ye L, Zhang M, Xiong J, Zhang R, Li X, Ji N, Lu X. Layered Double Hydroxide‐Derived Bimetallic Ni−Cu Catalysts Prompted the Efficient Conversion of γ‐Valerolactone to 2‐Methyltetrahydrofuran. ChemCatChem 2022. [DOI: 10.1002/cctc.202101441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xiaotong Wang
- School of Environmental Science and Engineering Tianjin Key Laboratory of Biomass/Wastes Utilization Tianjin University Tianjin 300350 P. R. China
| | - Zhihao Yu
- School of Environmental Science and Engineering Tianjin Key Laboratory of Biomass/Wastes Utilization Tianjin University Tianjin 300350 P. R. China
| | - Lei Ye
- School of Environmental Science and Engineering Tianjin Key Laboratory of Biomass/Wastes Utilization Tianjin University Tianjin 300350 P. R. China
| | - Ming Zhang
- School of Environmental Science and Engineering Tianjin Key Laboratory of Biomass/Wastes Utilization Tianjin University Tianjin 300350 P. R. China
| | - Jian Xiong
- School of Science Tibet University Lhasa Tibet 850000 P. R. China
| | - Rui Zhang
- School of Environmental and Municipal Engineering Tianjin Chengjian University Tianjin 300384 P. R. China
| | - Xiaoyun Li
- School of Agriculture Sun Yat-sen University Guangzhou Guangdong 510275 P. R. China
| | - Na Ji
- School of Environmental Science and Engineering Tianjin Key Laboratory of Biomass/Wastes Utilization Tianjin University Tianjin 300350 P. R. China
| | - Xuebin Lu
- School of Environmental Science and Engineering Tianjin Key Laboratory of Biomass/Wastes Utilization Tianjin University Tianjin 300350 P. R. China
- School of Science Tibet University Lhasa Tibet 850000 P. R. China
| |
Collapse
|
6
|
Serrà A, Artal R, Philippe L, Gómez E. Electrodeposited Ni-Rich Ni-Pt Mesoporous Nanowires for Selective and Efficient Formic Acid-Assisted Hydrogenation of Levulinic Acid to γ-Valerolactone. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4666-4677. [PMID: 33826345 PMCID: PMC8631738 DOI: 10.1021/acs.langmuir.1c00461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/26/2021] [Indexed: 06/12/2023]
Abstract
In pursuit of friendlier conditions for the preparation of high-value biochemicals, we developed catalytic synthesis of γ-valerolactone by levulinic acid hydrogenation with formic acid as the hydrogen source. Both levulinic and formic acid are intermediate products in the biomass transformation processes. The objective of the work is twofold: the development of a novel approach for milder synthesis conditions to produce γ-valerolactone and the reduction of the economic cost of the catalyst. Ni-rich Ni-Pt mesoporous nanowires were synthesized in an aqueous medium using a combined hard-soft-template-assisted electrodeposition method, in which porous polycarbonate membranes controlled the shape and the Pluronic P-123 copolymer served as the porogen agent. The electrodeposition conditions selected favored nickel deposition and generated nanowires with nickel percentages above 75 atom %. The increase in deposition potential favored nickel deposition. However, it was detrimental for the porous diameter because the mesoporous structure is promoted by the presence of the platinum-rich micelles near the substrate, which is not favored at more negative potentials. The prepared catalysts promoted the complete transformation to γ-valerolactone in a yield of around 99% and proceeded with the absence of byproducts. The coupling temperature and reaction time were optimized considering the energy cost. The threshold operational temperature was established at 140 °C, at which, 120 min was sufficient for attaining the complete transformation. Working temperatures below 140 °C rendered the reaction completion difficult. The Ni78Pt22 nanowires exhibited excellent reusability, with minimal nickel leaching into the reaction mixture, whereas those with higher nickel contents showed corrosion.
Collapse
Affiliation(s)
- Albert Serrà
- Laboratory
for Mechanics of Materials and Nanostructures, Empa, Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
- Grup
d’Electrodeposició de Capes Primes i Nanoestructures
(GE-CPN), Departament de Ciència de Materials i Química
Física, Universitat de Barcelona, Martí i Franquès,
1, E-08028 Barcelona, Catalonia, Spain
- Institute
of Nanoscience and Nanotechnology (INUB), Universitat de Barcelona, E-08028 Barcelona, Catalonia, Spain
| | - Raül Artal
- Laboratory
for Mechanics of Materials and Nanostructures, Empa, Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
- Grup
d’Electrodeposició de Capes Primes i Nanoestructures
(GE-CPN), Departament de Ciència de Materials i Química
Física, Universitat de Barcelona, Martí i Franquès,
1, E-08028 Barcelona, Catalonia, Spain
| | - Laetitia Philippe
- Laboratory
for Mechanics of Materials and Nanostructures, Empa, Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
| | - Elvira Gómez
- Grup
d’Electrodeposició de Capes Primes i Nanoestructures
(GE-CPN), Departament de Ciència de Materials i Química
Física, Universitat de Barcelona, Martí i Franquès,
1, E-08028 Barcelona, Catalonia, Spain
- Institute
of Nanoscience and Nanotechnology (INUB), Universitat de Barcelona, E-08028 Barcelona, Catalonia, Spain
| |
Collapse
|