1
|
Qiu S, Ju CL, Wang T, Chen J, Cui YT, Wang LQ, Fan FF, Huang J. Evolving ω-amine transaminase AtATA guided by substrate-enzyme binding free energy for enhancing activity and stability against non-natural substrates. Appl Environ Microbiol 2024; 90:e0054324. [PMID: 38864627 PMCID: PMC11267935 DOI: 10.1128/aem.00543-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/15/2024] [Indexed: 06/13/2024] Open
Abstract
In the field of chiral amine synthesis, ω-amine transaminase (ω-ATA) is one of the most established enzymes capable of asymmetric amination under optimal conditions. However, the applicability of ω-ATA toward more non-natural complex molecules remains limited due to its low transamination activity, thermostability, and narrow substrate scope. Here, by employing a combined approach of computational virtual screening strategy and combinatorial active-site saturation test/iterative saturation mutagenesis strategy, we have constructed the best variant M14C3-V5 (M14C3-V62A-V116S-E117I-L118I-V147F) with improved ω-ATA from Aspergillus terreus (AtATA) activity and thermostability toward non-natural substrate 1-acetylnaphthalene, which is the ketone precursor for producing the intermediate (R)-(+)-1-(1-naphthyl)ethylamine [(R)-NEA] of cinacalcet hydrochloride, showing activity enhancement of up to 3.4-fold compared to parent enzyme M14C3 (AtATA-F115L-M150C-H210N-M280C-V149A-L182F-L187F). The computational tools YASARA, Discovery Studio, Amber, and FoldX were applied for predicting mutation hotspots based on substrate-enzyme binding free energies and to show the possible mechanism with features related to AtATA structure, catalytic activity, and stability in silico analyses. M14C3-V5 achieved 71.8% conversion toward 50 mM 1-acetylnaphthalene in a 50 mL preparative-scale reaction for preparing (R)-NEA. Moreover, M14C3-V5 expanded the substrate scope toward aromatic ketone compounds. The generated virtual screening strategy based on the changes in binding free energies has successfully predicted the AtATA activity toward 1-acetylnaphthalene and related substrates. Together with experimental data, these approaches can serve as a gateway to explore desirable performances, expand enzyme-substrate scope, and accelerate biocatalysis.IMPORTANCEChiral amine is a crucial compound with many valuable applications. Their asymmetric synthesis employing ω-amine transaminases (ω-ATAs) is considered an attractive method. However, most ω-ATAs exhibit low activity and stability toward various non-natural substrates, which limits their industrial application. In this work, protein engineering strategy and computer-aided design are performed to evolve the activity and stability of ω-ATA from Aspergillus terreus toward non-natural substrates. After five rounds of mutations, the best variant, M14C3-V5, is obtained, showing better catalytic efficiency toward 1-acetylnaphthalene and higher thermostability than the original enzyme, M14C3. The robust combinational variant acquired displayed significant application value for pushing the asymmetric synthesis of aromatic chiral amines to a higher level.
Collapse
Affiliation(s)
- Shuai Qiu
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Cong-Lin Ju
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Tong Wang
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Jie Chen
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Yu-Tong Cui
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Lin-Quan Wang
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Fang-Fang Fan
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Jun Huang
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| |
Collapse
|
2
|
Duan ZW, Wang YW, Shen DD, Sun XQ, Wang P. Engineered the Active Site of ω-Transaminase for Enhanced Asymmetric Synthesis Towards (S)-1-[4-(Trifluoromethyl)phenyl]ethylamine. Appl Biochem Biotechnol 2024:10.1007/s12010-024-04886-7. [PMID: 38381312 DOI: 10.1007/s12010-024-04886-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
ω-Transaminase (ω-TA) is a promising biocatalyst for the synthesis of chiral amines. In this study, a ω-TA derived from Vitreoscilla stercoraria DSM 513 (VsTA) was heterologous expressed in recombinant E. coli cells and applied to reduce 4'-(trifluoromethyl)acetophenone (TAP) to (S)-1-[4-(trifluoromethyl)phenyl]ethylamine ((S)-TPE), a pharmaceutical intermediate of chiral amine. Aimed to a more efficient synthesis of (S)-TPE, VsTA was further engineered via a semi-rational strategy. Compared to wild-type VsTA, the obtained R411A variant exhibited 2.39 times higher activity towards TAP and enhanced catalytic activities towards other prochiral aromatic ketones. Additionally, better thermal stability for R411A variant was observed with 25.4% and 16.3% increase in half-life at 30 °C and 40 °C, respectively. Structure-guided analysis revealed that the activity improvement of R411A variant was attributed to the introduction of residue A411, which is responsible for the increase in the hydrophobicity of substrate tunnel and the alleviation of steric hindrance, thereby facilitating the accessibility of hydrophobic substrate TAP to the active center of VsTA. This study provides an efficient strategy for the engineering of ω-TA based on semi-rational approach and has the potential for the molecular modification of other biocatalysts.
Collapse
Affiliation(s)
- Zhi-Wen Duan
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yao-Wu Wang
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Da-Dong Shen
- Research & Development Center, Zhejiang Medicine Co. Ltd., Shaoxing, 312500, People's Republic of China
| | - Xin-Qiang Sun
- Research & Development Center, Zhejiang Medicine Co. Ltd., Shaoxing, 312500, People's Republic of China
| | - Pu Wang
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| |
Collapse
|
3
|
Transaminase-mediated chiral selective synthesis of (1R)-(3-methylphenyl)ethan-1-amine from 1-(3-methylphenyl)ethan-1-one: process minutiae, optimization, characterization and 'What If studies'. Bioprocess Biosyst Eng 2023; 46:207-225. [PMID: 36463332 DOI: 10.1007/s00449-022-02824-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/23/2022] [Indexed: 12/07/2022]
Abstract
Transaminases capable of carrying out chiral selective transamination of 1-(3-methylphenyl)ethan-1-one to (1R)-(3-methylphenyl)ethan-1-amine were screened, and ATA-025 was the best enzyme, while dimethylsulfoxide (10% V/V) was the best co-solvent for said bioconversion. The variables such as enzyme loading, substrate loading, temperature, and pH for development of process displaying maximum conversion with good product formation and higher yield were optimized. The ambient processing conditions were 10% enzyme loading/50 g/L substrate loading/45 °C/pH 8.0, and 5% enzyme loading/36.78 g/L substrate loading/42.66 °C/pH 8.2 displaying maximum conversion 99.01 ± 2.47% and 96.115 ± 1.97%, and 76.93 ± 1.05% and 73.12 ± 1.04% yield with one factor at a time approach and numerical optimization with Box Behnken Design, respectively. In the final optimized reaction, ATA-025 showed the highest 99.22 ± 2.61% conversion, 49.55 g/L product formation, with an actual product recovery of 38.16 g corresponding to a product yield 77.03 ± 1.01% with respect to the product formed after reaction. The purity of recovered product (1R)-(3-methylphenyl)ethan-1-amine formed was ≥ 99% (RP-HPLC), and chiral purity ≥ 98.5% (Chiral-GC), and it was also confirmed and characterized with instrumental methods using boiling point, LC-MS, ATR-FTIR, and 1H NMR. The findings of 'What If' studies performed by investigating timely progress of reaction on gram scale by drastically changing the process parameters revealed a substantial modification in process variables to achieve desired results. (1R)-(3-methylphenyl)ethan-1-amine synthesized by green, facile and novel enzymatic approach with an optimized process could be used for synthesis of different active pharma entities.
Collapse
|
4
|
Improving Catalytic Activity and Thermal Stability of Methyl-Parathion Hydrolase for Degrading the Pesticide of Methyl-Parathion. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1155/2022/7355170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pesticides are indispensable in today’s agriculture. Methyl-parathion hydrolase (MPH, E.C.3.1.8.1) could hydrolyze organophosphorus pesticides, including methyl-parathion. MPH could rehabilitate soil and water resources contaminated by organophosphorus pesticides. However, natural MPHs generally exhibited a low tolerance to high temperatures and low catalytic efficiency. In this study, we improved the catalytic efficiency toward methyl-parathion and the thermal stability of the MPH from Pseudomonas sp. WBC-3 through saturation mutagenesis and fusion with self-assembling amphipathic peptides (SAP). The experimental characterization showed that compared to the wild-type enzyme, the kcat/Km of the mutant T271S yielded by saturation mutagenesis was increased by 224.3% compared to the wild-type MPH. T50 and Tm of SAP3-MPH with an SAP fused at the N-terminus were increased by 6.2°C and 6.0°C, respectively. Compared to the wild-type enzyme, T271S fused with SAP3 at the N-terminus (SAP3-T271S) exhibited a 2.1-fold increase in kcat/Km without significantly affecting the thermal stability. The simultaneous improvement of the catalytic efficiency and thermal stability of MPH would be beneficial for its application in the degradation and detection of organophosphorus pesticides. Furthermore, our study provides a potential combination strategy for the design of the other enzyme preparations of pollutant degradation.
Collapse
|