1
|
Sato H, Hashimoto N, Watanabe Y, Ohtaka A. Regiospecificity of Immobilized Candida antarctica Lipase B (CAL-B) towards 2,3-Diacyl-1-O-alkyl Glyceryl Ether in Ethanol. J Oleo Sci 2024; 73:55-63. [PMID: 38171731 DOI: 10.5650/jos.ess23153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Highly pure 2,3-dioleoyl-1-O-alkyl glyceryl ether (DOGE), whose 1-position is a lipase-tolerant ether bond, was chemically synthesized and its detailed regioselectivity and acyl transfer were confirmed. During ethanolysis using immobilized Candida antarctica lipase B (CAL-B) with DOGE as the substrate, monooleoyl-1-O-alkyl glyceryl ethers (MOGEs) and a few 1-alkyl glyceryl ethers were formed upon consumption of the substrate. The structure of MOGE was confirmed using nuclear magnetic resonance spectroscopy and only the isomer of 2-MOGE was formed, indicating that CAL-B has complete α- regiospecificity. During ethanolysis, 3-MOGE was formed via acyl migration. These results indicate that the formation of 1-alkyl glyceryl ethers is not due to the imperfect regiospecificity of CAL-B, but rather due to ethanolysis of the formed 3-MOGE. The ethanolysis rate at the 3-α-position of DOGE was faster and the rate of acyl transfer was slightly slower for chain lengths greater than 14. These results show for the first time that both deacylation at the 3-position and acyl migration from the 2- to 3-position are affected by the structure of 1-position.
Collapse
Affiliation(s)
- Hirofumi Sato
- Osaka Research Institute of Industrial Science and Technology
| | | | - Yomi Watanabe
- Osaka Research Institute of Industrial Science and Technology
| | | |
Collapse
|
2
|
Liu J, Gao T, Xin J, Xia C. Unveiling Optimal Synthesis and Structural Insights of Starch Ferulate via the Mechanoenzymatic Method. Foods 2023; 12:3715. [PMID: 37893608 PMCID: PMC10606065 DOI: 10.3390/foods12203715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
In this study, starch ferulate was synthesized employing a mechanoenzymatic method, specifically based on the twin screw extrusion technique and lipase catalysis. The research then primarily centered on optimizing process parameters and conducting structural analysis. Optimal conditions were determined to be 8.2% ferulic acid addition, 66 °C extrusion temperature, and 3.2% lipase (N435) addition. The enzyme-catalyzed time was 30 s. The degree of substitution for starch ferulate was quantified at 0.005581 under these specific conditions. The presence of C=O bonds in the synthesized starch ferulate proved that the synthesis process was efficient. Additionally, the crystal structure underwent reconstruction. Observations through Scanning Electron Microscopy (SEM) and Confocal Laser Scanning Microscopy (CLSM) demonstrated that the mechanoenzymatic method led to an augmentation in the specific surface area of starch molecules, thereby facilitating the exposure of active sites. This breakthrough underscores the vast potential of mechanoenzymatic techniques to revolutionize the rapid and sustainable synthesis of starch ferulate, marking a pioneering stride in ester synthesis. The insights garnered from this study transcend theory, offering a visionary roadmap for the development and real-world deployment of advanced modified starch esters.
Collapse
Affiliation(s)
- Jingxue Liu
- Key Laboratory for Food Science and Engineering, Harbin University of Commerce, Harbin 150028, China
- College of Food Engineering, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Tingting Gao
- Key Laboratory for Food Science and Engineering, Harbin University of Commerce, Harbin 150028, China
- College of Food Engineering, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Jiaying Xin
- Key Laboratory for Food Science and Engineering, Harbin University of Commerce, Harbin 150028, China
- State Key Laboratory for Oxo Synthesis & Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Chungu Xia
- State Key Laboratory for Oxo Synthesis & Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
3
|
Zdun B, Reiter T, Kroutil W, Borowiecki P. Chemoenzymatic Synthesis of Tenofovir. J Org Chem 2023; 88:11045-11055. [PMID: 37467462 PMCID: PMC10407936 DOI: 10.1021/acs.joc.3c01005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Indexed: 07/21/2023]
Abstract
We report on novel chemoenzymatic routes toward tenofovir using low-cost starting materials and commercial or homemade enzyme preparations as biocatalysts. The biocatalytic key step was accomplished either via stereoselective reduction using an alcohol dehydrogenase or via kinetic resolution using a lipase. By employing a suspension of immobilized lipase from Burkholderia cepacia (Amano PS-IM) in a mixture of vinyl acetate and toluene, the desired (R)-ester (99% ee) was obtained on a 500 mg scale (60 mM) in 47% yield. Alternatively, stereoselective reduction of 1-(6-chloro-9H-purin-9-yl) propan-2-one (84 mg, 100 mM) catalyzed by lyophilized E. coli cells harboring recombinant alcohol dehydrogenase (ADH) from Lactobacillus kefir (E. coli/Lk-ADH Prince) allowed one to reach quantitative conversion, 86% yield and excellent optical purity (>99% ee) of the corresponding (R)-alcohol. The key (R)-intermediate was transformed into tenofovir through "one-pot" aminolysis-hydrolysis of (R)-acetate in NH3-saturated methanol, alkylation of the resulting (R)-alcohol with tosylated diethyl(hydroxymethyl) phosphonate, and bromotrimethylsilane (TMSBr)-mediated cleavage of the formed phosphonate ester into the free phosphonic acid. The elaborated enzymatic strategy could be applicable in the asymmetric synthesis of tenofovir prodrug derivatives, including 5'-disoproxil fumarate (TDF, Viread) and 5'-alafenamide (TAF, Vemlidy). The molecular basis of the stereoselectivity of the employed ADHs was revealed by molecular docking studies.
Collapse
Affiliation(s)
- Beata Zdun
- Laboratory
of Biocatalysis and Biotransformation, Department of Drugs Technology
and Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
| | - Tamara Reiter
- Institute
of Chemistry, University of Graz, NAWI Graz,
BioTechMed Graz, Field of Excellence BioHealth, Heinrichstrasse 28, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute
of Chemistry, University of Graz, NAWI Graz,
BioTechMed Graz, Field of Excellence BioHealth, Heinrichstrasse 28, 8010 Graz, Austria
| | - Paweł Borowiecki
- Laboratory
of Biocatalysis and Biotransformation, Department of Drugs Technology
and Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
| |
Collapse
|
4
|
Chemoenzymatic Synthesis of Optically Active Alcohols Possessing 1,2,3,4-Tetrahydroquinoline Moiety Employing Lipases or Variants of the Acyltransferase from Mycobacterium smegmatis. Catalysts 2022. [DOI: 10.3390/catal12121610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The enzymatic kinetic resolution (EKR) of racemic alcohols or esters is a broadly recognized methodology for the preparation of these compounds in optically active form. Although EKR approaches have been developed for the enantioselective transesterification of a vast number of secondary alcohols or hydrolysis of their respective esters, to date, there is no report of bio- or chemo-catalytic asymmetric synthesis of non-racemic alcohols possessing 1,2,3,4-tetrahydroquinoline moiety, which are valuable building blocks for the pharmaceutical industry. In this work, the kinetic resolution of a set of racemic 1,2,3,4-tetrahydroquinoline-propan-2-ols was successfully carried out in neat organic solvents (in the case of CAL-B and BCL) or in water (in the case of MsAcT single variants) using immobilized lipases from Candida antarctica type B (CAL-B) and Burkholderia cepacia (BCL) or engineered acyltransferase variants from Mycobacterium smegmatis (MsAcT) as the biocatalysts and vinyl acetate as irreversible acyl donor, yielding enantiomerically enriched (S)-alcohols and the corresponding (R)-acetates with E-values up to 328 and excellent optical purities (>99% ee). In general, higher ee-values were observed in the reactions catalyzed by lipases; however, the rates of the reactions were significantly better in the case of MsAcT-catalyzed enantioselective transesterifications. Interestingly, we have experimentally proved that enantiomerically enriched 1-(7-nitro-3,4-dihydroquinolin-1(2H)-yl)propan-2-ol undergoes spontaneous amplification of optical purity under achiral chromatographic conditions.
Collapse
|
5
|
Borowiecki P. Chemoenzymatic Synthesis of Optically Active Ethereal Analog of iso-Moramide-A Novel Potentially Powerful Analgesic †. Int J Mol Sci 2022; 23:ijms231911803. [PMID: 36233106 PMCID: PMC9569485 DOI: 10.3390/ijms231911803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
To develop potent and safer analgesics, we designed and synthesized a novel enantiomerically enriched ethereal analog of (R)-iso-moramide, namely 2-[(2R)-2-(morpholin-4-yl)propoxy]-2,2-diphenyl-1-(pyrrolidin-1-yl)ethan-1-one. The titled active agent can potentially serve as a powerful synthetic opiate with an improved affinity and selectivity toward opioid receptors (ORs). This hypothesis was postulated based on docking studies regarding the respective complexes between the designed ligand and µ-OR, δ-OR, and κ-OR. The key step of the elaborated asymmetric synthesis of novel analog involves lipase-catalyzed kinetic resolution of racemic 1-(morpholin-4-yl)propan-2-ol, which was accomplished on a 10 g scale via an enantioselective transesterification employing vinyl acetate as an irreversible acyl donor in tert-butyl methyl ether (MTBE) as the co-solvent. Next, the obtained homochiral (S)-(+)-morpholino-alcohol (>99% ee) was functionalized into corresponding chloro-derivative using thionyl chloride (SOCl2) or the Appel reaction conditions. Further transformation with N-diphenylacetyl-1-pyrrolidine under phase-transfer catalysis (PTC) conditions using O2-saturated DMSO/NaOH mixture as an oxidant furnished the desired levorotatory isomer of the title product isolated in 26% total yield after three steps, and with 89% ee. The absolute configuration of the key-intermediate of (R)-(−)-iso-moramide was determined using a modified form of Mosher’s methodology. The preparation of the optically active dextrorotatory isomer of the titled product (87% ee) was carried out essentially by the same route, utilizing (R)-(−)-1-(morpholin-4-yl)propan-2-ol (98% ee) as a key intermediate. The spectroscopic characterization of the ethereal analog of iso-moramide and the enantioselective retention relationship of its enantiomers using HPLC on the cellulose-based chiral stationary phase were performed. Moreover, as a proof-of-principle, single-crystal X-ray diffraction (XRD) analysis of the synthesized 2-[(2R)-2-(morpholin-4-yl)propoxy]-2,2-diphenyl-1-(pyrrolidin-1-yl)ethan-1-one is reported.
Collapse
Affiliation(s)
- Paweł Borowiecki
- Laboratory of Biocatalysis and Biotransformation, Department of Drugs Technology and Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Koszykowa St. 75, 00-662 Warsaw, Poland
| |
Collapse
|
6
|
Vanable EP, Habgood LG, Patrone JD. Current Progress in the Chemoenzymatic Synthesis of Natural Products. Molecules 2022; 27:molecules27196373. [PMID: 36234909 PMCID: PMC9571504 DOI: 10.3390/molecules27196373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Natural products, with their array of structural complexity, diversity, and biological activity, have inspired generations of chemists and driven the advancement of techniques in their total syntheses. The field of natural product synthesis continuously evolves through the development of methodologies to improve stereoselectivity, yield, scalability, substrate scope, late-stage functionalization, and/or enable novel reactions. One of the more interesting and unique techniques to emerge in the last thirty years is the use of chemoenzymatic reactions in the synthesis of natural products. This review highlights some of the recent examples and progress in the chemoenzymatic synthesis of natural products from 2019–2022.
Collapse
Affiliation(s)
- Evan P. Vanable
- Department of Chemistry and Biochemistry, Elmhurst University, Elmhurst, IL 60126, USA
| | - Laurel G. Habgood
- Department of Chemistry, Rollins College, Winter Park, FL 32789, USA
| | - James D. Patrone
- Department of Chemistry, Rollins College, Winter Park, FL 32789, USA
- Correspondence:
| |
Collapse
|
7
|
Sánchez‐Muñoz GK, Ortega‐Rojas MA, Chavelas‐Hernández L, Razo‐Hernández RS, Valdéz‐Camacho JR, Escalante J. Solvent‐Free Lipase‐Catalyzed Transesterification of Alcohols with Methyl Esters Under Vacuum‐Assisted Conditions. ChemistrySelect 2022. [DOI: 10.1002/slct.202202643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Grecia K. Sánchez‐Muñoz
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Centro de Investigaciones Químicas Universidad Autónoma del Estado de Morelos Av. Universidad No. 1001, Col. Chamilpa C.P. 62210 Cuernavaca Morelos México
| | - Marina A. Ortega‐Rojas
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Centro de Investigaciones Químicas Universidad Autónoma del Estado de Morelos Av. Universidad No. 1001, Col. Chamilpa C.P. 62210 Cuernavaca Morelos México
| | - Leticia Chavelas‐Hernández
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Centro de Investigaciones Químicas Universidad Autónoma del Estado de Morelos Av. Universidad No. 1001, Col. Chamilpa C.P. 62210 Cuernavaca Morelos México
| | - Rodrigo S. Razo‐Hernández
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Centro de Investigación en Dinámica Celular Universidad Autónoma del Estado de Morelos Av. Universidad No. 1001, Col. Chamilpa C.P. 62210 Cuernavaca Morelos México
| | - Jonathan R. Valdéz‐Camacho
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Centro de Investigaciones Químicas Universidad Autónoma del Estado de Morelos Av. Universidad No. 1001, Col. Chamilpa C.P. 62210 Cuernavaca Morelos México
| | - Jaime Escalante
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Centro de Investigaciones Químicas Universidad Autónoma del Estado de Morelos Av. Universidad No. 1001, Col. Chamilpa C.P. 62210 Cuernavaca Morelos México
| |
Collapse
|
8
|
de Souza R, Leão R, Maia B, Gomez M. Continuous-flow biocatalysed kinetic resolution of 4-fluorophenyl-furan-2-yl methanol. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2094258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Rodrigo de Souza
- Biocatalysis and Organic Synthesis Group, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel Leão
- Biocatalysis and Organic Synthesis Group, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Barbara Maia
- Biocatalysis and Organic Synthesis Group, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mauro Gomez
- Biocatalysis and Organic Synthesis Group, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Borowiecki P, Rudzka A, Reiter T, Kroutil W. Chemoenzymatic deracemization of lisofylline catalyzed by a (laccase/TEMPO)-alcohol dehydrogenase system. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00145d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This article reports on a novel biocatalytic method for the synthesis of both enantiomers of lisofylline based on Trametes versicolor laccase, TEMPO as a redox mediator and stereocomplementary recombinant alcohol dehydrogenases as biocatalysts.
Collapse
Affiliation(s)
- Paweł Borowiecki
- Laboratory of Biocatalysis and Biotransformation, Department of Drugs Technology and Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Koszykowa St. 75, 00-662 Warsaw, Poland
| | - Aleksandra Rudzka
- Laboratory of Biocatalysis and Biotransformation, Department of Drugs Technology and Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Koszykowa St. 75, 00-662 Warsaw, Poland
| | - Tamara Reiter
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Field of Excellence BioHealth, Heinrichstrasse 28, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Field of Excellence BioHealth, Heinrichstrasse 28, 8010 Graz, Austria
| |
Collapse
|
10
|
Ortega‐Rojas MA, Castillo E, Razo‐Hernández RS, Pastor N, Juaristi E, Escalante J. Effect of the Substituent and Amino Group Position on the Lipase‐Catalyzed Resolution of γ‐Amino Esters: A Molecular Docking Study Shedding Light on
Candida antarctica
lipase B Enantioselectivity. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Marina A. Ortega‐Rojas
- Instituto de Investigación en Ciencias Básicas y Aplicadas Centro de Investigaciones Químicas Universidad Autónoma del Estado de Morelos Av. Universidad No. 1001, Col. Chamilpa C.P. 62210 Cuernavaca Morelos México
| | - Edmundo Castillo
- Departamento de Ingeniería Celular y Biocatálisis Instituto de Biotecnología UNAM Apartado Postal 510–3 C.P. 62271 Cuernavaca Morelos México
| | - Rodrigo Said Razo‐Hernández
- Instituto de Investigación en Ciencias Básicas y Aplicadas Centro de Investigación en Dinámica Celular Universidad Autónoma del Estado de Morelos Av. Universidad No. 1001, Col. Chamilpa C.P. 62210 Cuernavaca Morelos México
| | - Nina Pastor
- Instituto de Investigación en Ciencias Básicas y Aplicadas Centro de Investigación en Dinámica Celular Universidad Autónoma del Estado de Morelos Av. Universidad No. 1001, Col. Chamilpa C.P. 62210 Cuernavaca Morelos México
| | - Eusebio Juaristi
- Departamento de Química Centro de Investigación y de Estudios Avanzados Av. Instituto Politécnico Nacional No. 2508 07360 Ciudad de México México
- El Colegio Nacional Luis González Obregón 23, Centro Histórico 06020 Ciudad de México México
| | - Jaime Escalante
- Instituto de Investigación en Ciencias Básicas y Aplicadas Centro de Investigaciones Químicas Universidad Autónoma del Estado de Morelos Av. Universidad No. 1001, Col. Chamilpa C.P. 62210 Cuernavaca Morelos México
| |
Collapse
|