1
|
Ohemeng PO, Godin R. Surface properties of carbon nitride materials used in photocatalytic systems for energy and environmental applications. Chem Commun (Camb) 2024; 60:12034-12061. [PMID: 39347587 DOI: 10.1039/d4cc03898c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The use of photocatalytic systems involving semiconductor materials for environmental and energy applications, such as water remediation and clean energy production, is highly significant. In line with this, a family of carbon-based polymeric materials known as carbon nitride (CNx) has emerged as a promising candidate for this purpose. Despite CNx's remarkable characteristics of performance, stability, and visible light responsiveness, its chemical inertness and poor surface properties hinder interfacial interactions, which are key to effective catalysis. This highlight reviews the literature focusing on the surface chemistry of CNx, especially its structural formation pathway, reactivity, and solvent interactions. It also explores recent advancements in the use of modified CNx for hydrogen production and arsenic remediation, offering recommendations for future material design improvements.
Collapse
Affiliation(s)
- Peter Osei Ohemeng
- Department of Chemistry, The University of British Columbia, 3247 University Way, Kelowna, BC, V1V 1V7, Canada.
| | - Robert Godin
- Department of Chemistry, The University of British Columbia, 3247 University Way, Kelowna, BC, V1V 1V7, Canada.
- Clean Energy Research Center, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
- Okanagan Institute for Biodiversity, Resilience, and Ecosystem Services, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
2
|
Siva V, Murugan A, Shameem AS, Jhelai S, Palanivel B, Asaithambi S, GaneshKumar P, Kim I, Govindasamy P, Lee J, Paramasivam S. Rational design of CdS-enwrapped polypyrrole nanoparticles for wastewater treatment: removal of hazardous pollutants in aqueous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33285-y. [PMID: 38653896 DOI: 10.1007/s11356-024-33285-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/07/2024] [Indexed: 04/25/2024]
Abstract
The modern world requires a chemical industry that can run at low production costs while producing high-quality products with minimal environmental impact. The development of environmentally friendly, cost-effective, and efficient wastewater treatment materials remains a major problem for the sustainable approach. We prepared nanoscale cadmium sulfide (CdS)-enwrapped polypyrrole (PPy) polymer composites for degradation of organic pollutants. The prepared CdS@PPy nanocomposites were characterized by powder X-ray diffraction, scanning electron microscope (SEM), field emission scanning electron microscope (FESEM), Fourier transform infrared spectroscopy (FTIR), and ultraviolet-visible (UV) absorption spectroscopy, indicating proper intercalation between CdS and PPy. Consequently, the catalytic efficiency of the synthesized hybrid nanocomposites was analyzed through the degradation of methylene blue (MB) and rhodamine B (Rh B) under visible light irradiation. The measured degradation efficiency of the dye solutions under the photolysis process is about 18% and 23% for MB and Rh B dye, respectively. Furthermore, the recycle test result concludes that the CdS@PPy composite exhibits 91% and 89% of MB and Rh B dye degradation efficiency even at the 4th cycle, respectively. The positive synergistic impact of CdS and PPy may be the result of effective photocatalytic degradation of MB and RhB.
Collapse
Affiliation(s)
- Vadivel Siva
- Department of Physics, Karpagam Academy of Higher Education, Coimbatore, 641 021, India
- Centre for Energy and Environment, Karpagam Academy of Higher Education, Coimbatore, 641 021, India
| | - Anbazhagan Murugan
- Department of Science and Humanities, Karpagam College of Engineering, Coimbatore, 641 032, India
| | - Abdul Samad Shameem
- Centre for Energy and Environment, Karpagam Academy of Higher Education, Coimbatore, 641 021, India
- Department of Science and Humanities, Karpagam Academy of Higher Education, Coimbatore, 641 021, India
| | - Sahadevan Jhelai
- Department of Physics, Karpagam Academy of Higher Education, Coimbatore, 641 021, India
| | - Baskaran Palanivel
- Department of Physics, Bannari Amman Institute of Technology, Sathyamangalam, 638 401, India
| | - Sankaiya Asaithambi
- Nanotechnology Advanced Materials Engineering, Sejong University, Seoul, South Korea
| | - Poongavanam GaneshKumar
- Department of Mechanical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Tamil Nadu, Kattankulathur, 603 203, India
| | - Ikhyun Kim
- Department of Mechanical Engineering, Keimyung University, Daegu, 42601, Republic of Korea
| | - Palanisamy Govindasamy
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea.
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea
| | | |
Collapse
|
3
|
Wang M, Cao W, Yu J, Yang D, Qi K, Zhao Y, Hua Z, Li H, Lu S. Electrocatalytic activity of CO 2 reduction to CO on cadmium sulfide enhanced by chloride anion doping. Chemistry 2024:e202303422. [PMID: 38240191 DOI: 10.1002/chem.202303422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Indexed: 01/31/2024]
Abstract
The electrocatalytic CO2 reduction (ECR) to produce valuable fuel is a promising process for addressing atmospheric CO2 emissions and energy shortages. In this study, Cl-anion doped cadmium sulfide structures were directly fabricated on a nickel foam surface (Cl/CdS-NF) using an in situ hydrothermal method. The Cl-anion doping could significantly improve ECR activity for CO production in ionic liquid and acetonitrile mixed solution, compared to pristine CdS. The highest Faradaic efficiency of CO is 98.1 % on a Cl/CdS-NF-2 cathode with an excellent current density of 137.0 mA cm-2 at -2.25 V versus ferrocene/ferrocenium (Fc/Fc+ , all potentials are versus Fc/Fc+ in this study). In particular, CO Faradaic efficiencies remained above 80 % in a wide potential range of -2.05 V to -2.45 V and a maximum partial current density (192.6 mA cm-2 ) was achieved at -2.35 V. The Cl/CdS-NF-2, with appropriate Cl anions, displayed abundant active sites and a suitable electronic structure, resulting in outstanding ECR activity. Density functional theory calculations further demonstrated that Cl/CdS is beneficial for increasing the adsorption capacities of *COOH and *H, which can enhance the activity of the ECR toward CO and suppress the hydrogen evolution reaction.
Collapse
Affiliation(s)
- Mingyan Wang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Weiqi Cao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jingkun Yu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Dexin Yang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Kongsheng Qi
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yuhua Zhao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zhixin Hua
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Hongping Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Siyu Lu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
4
|
Wang J, Niu L, Huang H, Miao J, Wei A, Zhang W, Liu Y. Synthesis of hierarchical Cd-Ni-MOF micro/nanostructures and derived Cd-Ni-MOF/CdS/NiS hybrid photocatalysts for efficient photocatalytic hydrogen evolution. Dalton Trans 2023; 52:2472-2484. [PMID: 36727533 DOI: 10.1039/d2dt04030a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Hierarchical micro/nanostructures assembled from nanorods and nanosheets have become promising candidates for photocatalysis. In this work, a series of hierarchical Cd-Ni-MOF micro/nanostructures, assembled from nanosheets and nanorods, were fabricated via a two-step solvothermal process involving the partial replacement of Ni2+ with Cd2+ in the Ni-MOF-74 structure. Different morphologies were obtained by considering different volume ratios of DMF and ethanol as the solvent during synthesis. Hierarchical Cd-Ni-MOF-T/CdS/NiS hybrid micro/nanostructures were synthesized by Ni2+ and Cd2+ exchange of Cd-Ni-MOFs with S2-. The as-prepared samples, which were composed of thin nanosheets alone, exhibited the best photocatalytic H2 evolution rate of about 40.08 mmol g-1 h-1. The p-n junction between CdS and NiS was found to be beneficial for the migration of photogenerated electrons from the conduction band (CB) of NiS to the CB of CdS. The heterojunction between CdS and Cd-Ni-MOF-T further promoted the transfer of an electron from the CB of CdS to the CB of Cd-Ni-MOF-T. Thus, this study demonstrated that hierarchical Cd-Ni-MOF-T/CdS/NiS architectures have a large specific surface area, leading to significantly improved photocatalytic activity.
Collapse
Affiliation(s)
- Jian Wang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China.
| | - Lu Niu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China.
| | - Huichuan Huang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China.
| | - Jingjing Miao
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China.
| | - Aili Wei
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China.
| | - Wanggang Zhang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China.
| | - Yiming Liu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China.
| |
Collapse
|
5
|
Milani M, Mazzanti M, Magnacca G, Caramori S, Molinari A. A Novel Hydrothermal CdS with Enhanced Photocatalytic Activity and Photostability for Visible Light Hydrogenation of Azo Bond: Synthesis and Characterization. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:413. [PMID: 36770375 PMCID: PMC9921911 DOI: 10.3390/nano13030413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
A good photocatalyst maximizes the absorption of excitation light while reducing the recombination of photogenerated carriers. Among visible light responsive materials, CdS has good carrier transport capacity; however, its photostability is poor and limits its use. Here, the synthesis of a new hydrothermal CdS is reported, and post-synthesis annealing determines crystal properties and spectroscopic characteristics. The introduction of sulfur vacancies as intra band gap states is the key factor for the enhancement of photocatalytic activity. In fact, by spectroscopic and photo-electrochemical experiments, we demonstrate that sulfur vacancies act as an electron sink, favoring the charge transfer process to methyl orange. In addition, the studied hydrothermal CdS is characterized by very high stability, thus enabling a visible-light active photocatalyst that is overall recyclable, stable and more efficient than the commercial benchmark.
Collapse
Affiliation(s)
- Martina Milani
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Michele Mazzanti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Giuliana Magnacca
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Stefano Caramori
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Alessandra Molinari
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| |
Collapse
|
6
|
Khosa R, Pervaiz E, Abdullah U, Ali M, Sohail U, Shakoor A. An Insight on Molybdenum Phosphide and its Hybrids as Catalyst for Electrochemical Water splitting: A Mini-Review. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Liu T, Li B, Zhou X, Chen H. A Study on the Time-Effect and Dose-Effect Relationships of Polysaccharide from Opuntia dillenii against Cadmium-Induced Liver Injury in Mice. Foods 2022; 11:foods11091340. [PMID: 35564063 PMCID: PMC9100615 DOI: 10.3390/foods11091340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/30/2022] [Accepted: 05/01/2022] [Indexed: 11/24/2022] Open
Abstract
The purpose of this study was to evaluate the protective effect of Opuntia dillenii (Ker-Gaw) Haw. polysaccharide (ODP) against cadmium-induced liver injury. Cadmium chloride (CdCl2) was used to construct a mice evaluation model, and the indicators chosen included general signs, liver index, biochemical indicators, blood indicators, and pathological changes. A dose of 200 mg/kg ODP was applied to the mice exposed to cadmium for different lengths of time (7, 14, 21, 28, and 35 days). The results showed that CdCl2 intervention led to slow weight growth (reduced by 13−20%); liver enlargement; significantly increased aspartate aminotransferase (AST, 45.6−52.0%), alanine aminotransferase (ALT, 26.6−31.3%), and alkaline phosphatase (ALP, 38.2−43.1%) levels; and significantly decreased hemoglobin (HGB, 13.1−15.2%), mean corpuscular hemoglobin (MCH, 16.5−19.3%), and mean corpuscular hemoglobin concentrations (MCHC, 8.0−12.7%) (p < 0.01). In addition, it led to pathological features such as liver cell swelling, nuclear exposure, central venous congestion, apoptosis, and inflammatory cell infiltration. The onset of ODP anti-cadmium-induced liver injury occurred within 7 days after administration, and the efficacy reached the highest level after continuous administration for 14 days, a trend that could continue until 35 days. Different doses (50, 100, 200, 400, and 600 mg/kg) of ODP have a certain degree of protective effect on cadmium-induced liver injury, showing a good dose−effect relationship. After 28 days of administration of a 200 mg/kg dose, all pathological indicators were close to normal values. These findings indicated that ODP had positive activity against cadmium-induced liver injury and excellent potential for use as a health food or therapeutic drug.
Collapse
Affiliation(s)
- Ting Liu
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China; (T.L.); (B.L.); (X.Z.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China
| | - Bianli Li
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China; (T.L.); (B.L.); (X.Z.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China
| | - Xin Zhou
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China; (T.L.); (B.L.); (X.Z.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China
| | - Huaguo Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China; (T.L.); (B.L.); (X.Z.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China
- Correspondence: ; Tel.: +86-851-8669-0018; Fax: +86-851-8669-0018
| |
Collapse
|