1
|
Wu X, Ruan J, Chen L, Qi Z. Dihydroxyl-Cooperative 1,2,4-Triazole-Based Ionic Liquid for Robust Reversible CO 2 Absorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20342-20351. [PMID: 39311054 DOI: 10.1021/acs.langmuir.4c01171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
The development of aqueous absorbents for CO2 capture is significantly important to reduce global industrial gas emissions through high regeneration efficiency and low energy consumption. Herein, we newly designed and prepared a dihydroxylated ionic liquid (IL) bis(2-hydroxyethyl)dimethylammonium 1,2,4-triazole ([N1,1,2OH,2OH][TZ]) for highly efficient CO2 absorption through anion-cation cooperative interactions. A superior capacity of 1.33 mol of CO2 per mol of IL and excellent reversibility have been achieved by the introduction of dihydroxy sites on the ammonium-based Tz IL. 1H and 13C nuclear magnetic resonance, Fourier transform infrared, and quantum chemical calculations demonstrate bihydroxyl-cooperative absorption of CO2 via hydrogen bond interaction between the cation and anion of the IL. The theory calculation shows that IL displays a superlow reactive absorption enthalpy, favorable to the reversible CO2 absorption, which can maintain an initial absorption capacity of 98.5% with the cycle numbers of 100, implying the facile regeneration and superlow energy consumption. Thus, the functionalized ILs toward group cooperative gas absorption and excellent reversibility may open a door to designing new materials for enhancing CO2 absorption and utilization.
Collapse
Affiliation(s)
- Xinzi Wu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, China
| | - Jiawei Ruan
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, China
| | - Lifang Chen
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, China
| | - Zhiwen Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, China
| |
Collapse
|
2
|
Li ZF, Li YT, Zhang Q, Hu TL. 2-Methylimidazole-modulated 2D Cu metal-organic framework for 5-hydroxymethylfurfural hydrodeoxygenation. Dalton Trans 2024; 53:1698-1705. [PMID: 38169009 DOI: 10.1039/d3dt03870j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Preparation of the high value-added chemical 2,5-dimethylfuran (2,5-DMF) from the biomass-derived platform molecule 5-hydroxymethylfurfural (HMF) is of great significance in the preparation of biofuels. Here, a bottom-up strategy was used to prepare a metal-organic framework (MOF) material with a two-dimensional nanosheet morphology, named CPM, in which an additive 2-methylimidazole was introduced into the hydrothermal process of Cu2+ ions and terephthalic acid. Subsequently, CPM-700 prepared by heat treatment under an inert atmosphere showed excellent catalytic performance in the reaction of HMF hydrodeoxygenation to 2,5-DMF. The materials before and after pyrogenation were characterized by PXRD, XPS, TEM, N2 adsorption and desorption and so on. It was confirmed that compared with the catalyst derived from the cubic MOF material self-assembled by Cu2+ and terephthalic acid, the morphology of 2D nanosheets was beneficial for the reaction of HMF to 2,5-DMF. Combined with the experimental data, the possible reaction path of 2,5-DMF preparation from HMF is that 2,5-dihydroxymethylfuran was formed by hydrogenation of the aldehyde group on the furan ring, and then 2,5-DMF was obtained by hydrogenolysis. This paper provides an effective route for 2D MOF-derived catalytic materials in the selective hydrogenation of HMF.
Collapse
Affiliation(s)
- Zhuo-Fei Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Yan-Ting Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
| | - Qiang Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
| | - Tong-Liang Hu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| |
Collapse
|
3
|
Freitas VV, Rodrigues Borges LL, Dias Castro GA, Henrique dos Santos M, Teixeira Ribeiro Vidigal MC, Fernandes SA, Stringheta PC. Impact of different roasting conditions on the chemical composition, antioxidant activities, and color of Coffea canephora and Coffea arabica L. samples. Heliyon 2023; 9:e19580. [PMID: 37809526 PMCID: PMC10558851 DOI: 10.1016/j.heliyon.2023.e19580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 10/10/2023] Open
Abstract
This work aimed to evaluate the physicochemical changes during the roasting process of Robusta and Arabica coffee. The highest content of total phenolics was detected in roasted coffee at temperatures of 135 °C/20.20 min, 210 °C/9.02 min, 210 °C/11.01 min, and 220 °C/13.47 min for both species. Robusta coffee showed greater antioxidant activity compared to Arabica coffee, except for the profiles at 230 °C/17.43 min and 275 °C/7.46 min that did not differ between samples by the DPPH and FRAP methods. For Arabica coffee, the antioxidant activity was independent of the roasting profile used. Robusta coffee presented higher values of the indexes b* (intensity of yellow vs blue), c* (chroma) and hue, being characterized as lighter and with greater chroma and hue. The highest levels of caffeoylquinic acid (5-CQA) were observed in Robusta coffee. Arabica coffee had lower trigonelline values. Caffeic acid and hydroxymethylfurfural were identified only in Robusta coffee. However, the results provided solid knowledge for the design of general properties and chemical compounds generated from binomials of roasting time and temperature that are little used in the world market.
Collapse
|
4
|
Polidoro D, Rodriguez-Padron D, Perosa A, Luque R, Selva M. Chitin-Derived Nanocatalysts for Reductive Amination Reactions. MATERIALS (BASEL, SWITZERLAND) 2023; 16:575. [PMID: 36676310 PMCID: PMC9864054 DOI: 10.3390/ma16020575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/29/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Chitin, the second most abundant biopolymer in the planet after cellulose, represents a renewable carbon and nitrogen source. A thrilling opportunity for the valorization of chitin is focused on the preparation of biomass-derived N-doped carbonaceous materials. In this contribution, chitin-derived N-doped carbons were successfully prepared and functionalized with palladium metal nanoparticles. The physicochemical properties of these nanocomposites were investigated following a multi-technique strategy and their catalytic activity in reductive amination reactions was explored. In particular, a biomass-derived platform molecule, namely furfural, was upgraded to valuable bi-cyclic compounds under continuous flow conditions.
Collapse
Affiliation(s)
- Daniele Polidoro
- Department of Molecular Science and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30175 Venezia Mestre, Italy
| | - Daily Rodriguez-Padron
- Department of Molecular Science and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30175 Venezia Mestre, Italy
| | - Alvise Perosa
- Department of Molecular Science and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30175 Venezia Mestre, Italy
| | - Rafael Luque
- Department of Natural Sciences, Mid Sweden University, Holmgatan 10, 85170 Sundsvall, Sweden
- Universidad ECOTEC, Km. 13.5 Samborondón, Samborondón EC092302, Ecuador
| | - Maurizio Selva
- Department of Molecular Science and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30175 Venezia Mestre, Italy
| |
Collapse
|
5
|
Selective Hydrogenation of 5-Acetoxymethylfurfural over Cu-Based Catalysts in a Flow Reactor: Effect of Cu-Al Layered Double Hydroxides Synthesis Conditions on Catalytic Properties. Catalysts 2022. [DOI: 10.3390/catal12080878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cu-containing layered double hydroxides (LDHs) were synthesized by a co-precipitation method at different reaction conditions, such as aging time, pH, precipitation rate and synthesis temperature. The effect of these parameters on the structure and chemical composition of the catalysts were investigated using a set of physical methods, including thermogravimetric analysis (TGA), X-ray diffraction (XRD), H2-TPR and in situ X-ray photoelectron spectroscopy (XPS). It allowed for checking of the reducibility of the samples. 5-Acetoxymethylfurfural was catalytically hydrogenated to 5-(acetoxymethyl)-2-furanmethanol (AMFM) over Cu-containing catalysts synthesized from layered double hydroxides so as to investigate its catalytic properties in flow reaction. It was shown that synthesis pH decreasing from 10 to 8 resulted in rise of AMF conversion that coincided with the higher surface Cu/Al ratio obtained by XPS. Preferable aging time of LDH materials for obtaining the most active catalyst was 2 h, an amount of time that favored the production of the catalyst with high surface Cu/Al ratio up to 0.38. Under optimized reaction conditions, the AMFM yield was 98%. Finally, a synthesis strategy for the preparation of highly efficient Cu-based hydrogenation catalyst with optimized characteristics is suggested.
Collapse
|
6
|
Rigo D, Masters AF, Maschmeyer T, Selva M, Fiorani G. Isopropenyl Esters (iPEs) in Green Organic Synthesis. Chemistry 2022; 28:e202200431. [DOI: 10.1002/chem.202200431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Davide Rigo
- Department of Molecular Sciences and Nanosystems Ca' Foscari University of Venice Via Torino 155 30172 Venezia (VE) Italy
| | - Anthony F. Masters
- Laboratory of Advanced Catalysis for Sustainability School of Chemistry University of Sydney Sydney NSW 2006 Australia
| | - Thomas Maschmeyer
- Laboratory of Advanced Catalysis for Sustainability School of Chemistry University of Sydney Sydney NSW 2006 Australia
| | - Maurizio Selva
- Department of Molecular Sciences and Nanosystems Ca' Foscari University of Venice Via Torino 155 30172 Venezia (VE) Italy
| | - Giulia Fiorani
- Department of Molecular Sciences and Nanosystems Ca' Foscari University of Venice Via Torino 155 30172 Venezia (VE) Italy
| |
Collapse
|
7
|
Rodríguez‐Padrón D, Perosa A, Longo L, Luque R, Selva M. Tuning the Selectivity of the Hydrogenation/Hydrogenolysis of 5-Hydroxymethylfurfural under Batch Multiphase and Continuous-Flow Conditions. CHEMSUSCHEM 2022; 15:e202200503. [PMID: 35762402 PMCID: PMC9400871 DOI: 10.1002/cssc.202200503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/25/2022] [Indexed: 06/15/2023]
Abstract
The hydrogenation/hydrogenolysis of 5-hydroxymethylfurfural (HMF) has been carried out either under single (aqueous) phase or batch multiphase (MP) conditions using mutually immiscible aqueous/hydrocarbon phases, 5 % Ru/C as a catalyst, and both with and without the use of trioctylmethyl phosphonium bis-(trifluoro methane) sulfonimide ([P8881 ][NTf2 ]) as an ionic liquid (IL). Alternatively, the hydrogenation of HMF was explored in the continuous-flow (CF) mode with the same catalyst. By changing reaction parameters, experiments were optimized towards the formation of three products: 2,5-bis(hydroxy methyl)furan (BHMF), 2,5-bis(hydroxymethyl)tetrahydrofuran (BHMTHF), and 1-hydroxyhexane-2,5-dione (HHD), which were obtained in up to 92, 90, and 99 % selectivity, respectively, at quantitative conversion. In particular, the single (aqueous) phase reaction of HMF (0.2 m) carried out for 18 h at 60 °C under 30 bar of H2 , allowed the exclusive synthesis of BHMF from the partial (carbonyl) hydrogenation of HMF, while the MP reaction run at a higher T and p (100 °C and 50 bar) proved excellent to achieve only HHD derived from a sequence of hydrogenation/hydrogenolysis. It is worth noting that under MP conditions, the catalyst was perfectly segregated in the IL, where it could be recycled without any leaching in the aqueous/hydrocarbon phases. Finally, the hydrogenation of HMF was explored in a H-Cube® flow reactor in the presence of different solvents, such as ethyl acetate, tetrahydrofuran, and ethanol. At 100 °C, 50 bar H2 , and a flow rate of 0.1 mL min-1 , the process was optimized towards the formation of the full hydrogenation product BHMTHF. Ethyl acetate proved the best solvent.
Collapse
Affiliation(s)
- Daily Rodríguez‐Padrón
- Dipartimento di Scienze Molecolari e NanosistemiUniversitàCa' Foscari di Venezia30123VeneziaItaly
| | - Alvise Perosa
- Dipartimento di Scienze Molecolari e NanosistemiUniversitàCa' Foscari di Venezia30123VeneziaItaly
| | - Lilia Longo
- Dipartimento di Scienze Molecolari e NanosistemiUniversitàCa' Foscari di Venezia30123VeneziaItaly
| | - Rafael Luque
- Grupo FQM-383Departamento de Química OrgánicaUniversidad de Cordoba, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 39614001CordobaSpain
- Scientific Center for Molecular Design and Synthesi of Innovative Compounds for the Medical IndustryPeople's Friendship University of Russia (RUDN University), 6 Miklukho Maklaya st.117198MoscowRussia
| | - Maurizio Selva
- Dipartimento di Scienze Molecolari e NanosistemiUniversitàCa' Foscari di Venezia30123VeneziaItaly
| |
Collapse
|