1
|
Probing the Roles of S Atom and Nanoparticle Size over Different Sizes of S-modified Cu and Pd Nanoparticles in Regulating Catalytic Performance of Acetylene Semi-hydrogenation. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
2
|
Sun M, Wang F, Lv G, Zhang X. Effective Inhibition of Ethane Generation on Fe 5C 2 Nanoparticles Doped with ppm Level of Pd for Selective Hydrogenation of Acetylene. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Mingshuai Sun
- Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Fumin Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Guojun Lv
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu China
| | - Xubin Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
3
|
Zhu Y, Jian C, Xue R, Zhang W, Guo R, Gao Y, Chen DL, Zhang F, Zhu W, Wang FF. Theoretical understanding on all-solid frustrated Lewis pair sites of C 2N anchored by single metal atom. J Chem Phys 2022; 157:054704. [DOI: 10.1063/5.0100170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Designing all-solid heterogeneous catalysts with frustrated Lewis pairs (FLPs) has aroused great attentions recently because of its appealing low dissociation energy for H2 molecule and thus a promotion of hydrogenation reaction is expected. The sterically encumbered Lewis acid (metal site) and base (nitrogen site) in the cavity of single transition metal atom doped M/C2N sheet makes it potential candidate with FLP, while a comprehensive understanding of its intrinsic property and reactivity is still required. Calculations show that the complete dissociation of H2 molecule into two H* at the N sites requires two steps, i.e., heterolytic cleavage of H2 molecule and the transfer of H* from metal site to N site, which are highly related to the acidity of the metal site. The Ni/C2N and Pd/C2N, which outperform over the other 8 transition metal atom (M) anchored M/C2N candidates, possess low energy barriers for the complete dissociation of H2 molecule, with values of only 0.30 and 0.20 eV, respectively. Furthermore, both Ni/C2N and Pd/C2N catalysts can achieve semi-hydrogenation of C2H2 into C2H4, with overall barriers of 0.81 and 0.75 eV, respectively, lower than many reported catalysts. It is speculated that M/C2N catalysts with intrinsic FLPs may also find applications in other important hydrogenation reaction.
Collapse
Affiliation(s)
| | | | | | | | - Rou Guo
- Zhejiang Normal University, China
| | | | | | | | | | | |
Collapse
|
4
|
Niakan M, Masteri-Farahani M. An efficient clean and sustainable methodology for catalytic C-C coupling process over a Pd-free magnetically recoverable cobalt catalyst. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|