1
|
Jiang D, Zhang Y, Qiao X, Xiao J, Liu K, Li J, Liu J. Selective N=S Coupling Reactions of N-Methoxy Arylamides and Sulfoxides Catalyzed by Iron Salt. ACS OMEGA 2024; 9:37044-37051. [PMID: 39246465 PMCID: PMC11375812 DOI: 10.1021/acsomega.4c03569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 09/10/2024]
Abstract
An iron-catalyzed selective N=S coupling of N-methoxy amides and sulfoxides has been developed and was found to be a highly efficient method for the synthesis of N-acyl sulfoximines. Electron-donating as well as electron-withdrawing groups on the phenyl ring are tolerated, and even sensitive substituents are compatible. The current catalytic transformation was conducted under an air atmosphere and can be easily scaled up to a gram scale with a catalyst loading of only 1 mol %. In this case, both coupling partners are used in their native forms, thus obviating prior functionalization and activation.
Collapse
Affiliation(s)
- Dandan Jiang
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, 86 Hongqi Road, Ganzhou 341000, China
| | - Yingzhen Zhang
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, 86 Hongqi Road, Ganzhou 341000, China
| | - Xin Qiao
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, 86 Hongqi Road, Ganzhou 341000, China
| | - Jun Xiao
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, 86 Hongqi Road, Ganzhou 341000, China
| | - Kunming Liu
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, 86 Hongqi Road, Ganzhou 341000, China
| | - Juanhua Li
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, 86 Hongqi Road, Ganzhou 341000, China
| | - Jinbiao Liu
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, 86 Hongqi Road, Ganzhou 341000, China
| |
Collapse
|
2
|
Zhong P, Yang M, Liu K, He W, Liu JB. Visible-Light-Driven Method for the Selective Synthesis of Amides and N-Acylureas from Carboxylic Acids and Thioureas. Chemistry 2024:e202402677. [PMID: 39158858 DOI: 10.1002/chem.202402677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 08/20/2024]
Abstract
In this work, we developed a visible-light-driven method for the selective synthesis of amides and N-acylureas from carboxylic acids and thioureas. This protocol was featured as avoidance of additional oxidants and transition metal catalysts, simple manipulations, low cost, broad substrate scope, and good functional group tolerance. As only oxygen serves as the oxidation reagent, this method provides a promising synthesis candidate for the formation of N-aryl amides and N-acylureas, including late-stage functionalization of complex pharmaceutical molecules and biologically active molecules.
Collapse
Affiliation(s)
- Pinyong Zhong
- Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Min Yang
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Kunming Liu
- Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Weimin He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Jin-Biao Liu
- Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| |
Collapse
|
3
|
Ramachandran PV, Singh A, Walker H, Hamann HJ. Borane-Pyridine: An Efficient Catalyst for Direct Amidation. Molecules 2024; 29:268. [PMID: 38202849 PMCID: PMC10780903 DOI: 10.3390/molecules29010268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Borane-pyridine acts as an efficient (5 mol%) liquid catalyst, providing improved solubility for the direct amidation of a wide range of aromatic and aliphatic carboxylic acids and amines to form secondary and tertiary carboxamides. Tolerance of potentially incompatible halo, nitro, and alkene functionalities has been demonstrated.
Collapse
|
4
|
Zhong P, Wang YC, Liu JB, Zhang L, Luo N. K 2CO 3-promoted synthesis of amides from 1-aryl-2,2,2-trifluoroethanones and amines under mild conditions. RSC Adv 2023; 13:18160-18164. [PMID: 37333725 PMCID: PMC10269829 DOI: 10.1039/d3ra03329e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/10/2023] [Indexed: 06/20/2023] Open
Abstract
A base-promoted amidation of 1-aryl-2,2,2-trifluoroethanones with amines via Haller-Bauer reaction has been developed. In this reaction, the direct transformation of 1-aryl-2,2,2-trifluoroethanones into amides via C(O)-C bond cleavage occurs without the use of any stoichiometric chemical oxidants or transition-metal catalysts. A series of primary and secondary amines are shown to be compatible with this transformation, and several pharmaceutical molecules were synthesized.
Collapse
Affiliation(s)
- Pinyong Zhong
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology Ganzhou 341000 China
| | - Yu-Chao Wang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology Ganzhou 341000 China
| | - Jin-Biao Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology Ganzhou 341000 China
| | - Linjun Zhang
- Jiangxi Province Zhonggantou Survey and Design Co., Ltd. Nanchang 330029 China
| | - Nianhua Luo
- School of Pharmaceutical Sciences, Gannan Medical University Ganzhou 341000 China
| |
Collapse
|
5
|
Gao Y, Li H, Zhao Y, Hu XQ. Nitrene transfer reaction with hydroxylamine derivatives. Chem Commun (Camb) 2023; 59:1889-1906. [PMID: 36661267 DOI: 10.1039/d2cc06318b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Recent progress on catalytic nitrene transfer reactions with hydroxylamine derivatives as prevalent precursors is summarized in this highlight. The salient features of these N-O derived nitrene transfer reagents are that they are readily available, bench-stable, and can be facilely activated by a range of transition metal-catalysts under mild conditions. The application of these reagents in transition metal-catalysis has led to many new amidation or amination reactions, such as C-H insertions and aziridination of olefins. These reagents have also been applied in difunctionalisation of unsaturated bonds, dearomative amination of indoles, and formation of N-X bonds. Moreover, the recent achievements in photocatalysis and enzyme catalysis further emphasize the importance of these appealing reagents. This highlight provides an overview of these reactions reported in recent years. Challenges and potential opportunities for future developments are also discussed.
Collapse
Affiliation(s)
- Yang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.,Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China.
| | - Haixia Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yupeng Zhao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China.
| |
Collapse
|
6
|
Hou M, Zhang Z, Lai X, Zong Q, Jiang X, Guan M, Qi R, Qiu G. Photoredox/Iron Dual-Catalyzed Insertion of Acyl Nitrenes into C-H Bonds. Org Lett 2022; 24:4114-4118. [PMID: 35666621 DOI: 10.1021/acs.orglett.2c01176] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this work, the use of N-acyloxybenzamides as efficient acyl nitrene precursors under photoredox/iron dual catalysis is reported. The resulting acyl nitrenes could be captured by various types of C-H bonds and S- or P-containing molecules. Mechanism investigations suggested that the formation of the acyl nitrene from the N-acyloxybenzamide occurs by a photoredox process, and it is believed that in this redox process oxidative N-H bond cleavage of the N-acyloxybenzamide occurs prior to reductive N-O bond cleavage of the N-acyloxybenzamide.
Collapse
Affiliation(s)
- Ming Hou
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 341014, China.,College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Zhide Zhang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Xiaojing Lai
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Qianshou Zong
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Xinpeng Jiang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 341014, China
| | - Meng Guan
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Rui Qi
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Guanyinsheng Qiu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| |
Collapse
|
7
|
Mei YK, Min XT, Guo SY, Liu CH, Zhang XX, Ji DW, Wan B, Chen QA. Photo‐Induced Construction of N‐Aryl Amides under Fe Catalysis. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yong-Kang Mei
- Chinese Academy of Sciences Dalian Institute of Chemical Physics CHINA
| | - Xiang-Ting Min
- Chinese Academy of Sciences Dalian Institute of Chemical Physics CHINA
| | - Shi-Yu Guo
- Chinese Academy of Sciences Dalian Institute of Chemical Physics CHINA
| | - Chang-Hui Liu
- Chinese Academy of Sciences Dalian Institute of Chemical Physics CHINA
| | - Xiang-Xin Zhang
- Chinese Academy of Sciences Dalian Institute of Chemical Physics CHINA
| | - Ding-Wei Ji
- Chinese Academy of Sciences Dalian Institute of Chemical Physics CHINA
| | - Boshun Wan
- Chinese Academy of Sciences Dalian Institute of Chemical Physics CHINA
| | - Qing-An Chen
- Chinese Academy of Sciences Dalian Institute of Chemical Physics 457 Zhongshan Road 116023 Dalian CHINA
| |
Collapse
|