1
|
Paus R, Sevilla A, Grichnik JM. Human Hair Graying Revisited: Principles, Misconceptions, and Key Research Frontiers. J Invest Dermatol 2024; 144:474-491. [PMID: 38099887 DOI: 10.1016/j.jid.2023.09.276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/09/2023] [Accepted: 09/12/2023] [Indexed: 02/25/2024]
Abstract
Hair graying holds psychosocial importance and serves as an excellent model for studying human pigmentation and aging in an accessible miniorgan. Current evidence suggests that graying results from an interindividually varying mixture of cumulative oxidative and DNA damage, excessive mTORC1 activity, melanocyte senescence, and inadequate production of pigmentation-promoting factors in the hair matrix. Various regulators modulate this process, including genetic factors (DNA repair defects and IRF4 sequence variation, peripheral clock genes, P-cadherin signaling, neuromediators, HGF, KIT ligand secretion, and autophagic flux. This leads to reduced MITF- and tyrosinase-controlled melanogenesis, defective melanosome transfer to precortical matrix keratinocytes, and eventual depletion of hair follicle (HF) pigmentary unit (HFPU) melanocytes and their local progenitors. Graying becomes irreversible only when bulge melanocyte stem cells are also depleted, occurring later in this process. Distinct pigmentary microenvironments are created as the HF cycles: early anagen is the most conducive phase for melanocytic reintegration and activation, and only during anagen can the phenotype of hair graying and repigmentation manifest, whereas the HFPU disassembles during catagen. The temporary reversibility of graying is highlighted by several drugs and hormones that induce repigmentation, indicating potential target pathways. We advise caution in directly applying mouse model concepts, define major open questions, and discuss future human antigraying strategies.
Collapse
Affiliation(s)
- Ralf Paus
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; CUTANEON - Skin & Hair Innovations, Hamburg, Germany; Monasterium Laboratory, Münster, Germany.
| | - Alec Sevilla
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Internal Medicine, Lakeland Regional Health, Lakeland, Florida, USA
| | - James M Grichnik
- Department of Dermatology & Cutaneous Surgery, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
2
|
Adav SS, Ng KW. Recent omics advances in hair aging biology and hair biomarkers analysis. Ageing Res Rev 2023; 91:102041. [PMID: 37634889 DOI: 10.1016/j.arr.2023.102041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/27/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
Aging is a complex natural process that leads to a decline in physiological functions, which is visible in signs such as hair graying, thinning, and loss. Although hair graying is characterized by a loss of pigment in the hair shaft, the underlying mechanism of age-associated hair graying is not fully understood. Hair graying and loss can have a significant impact on an individual's self-esteem and self-confidence, potentially leading to mental health problems such as depression and anxiety. Omics technologies, which have applications beyond clinical medicine, have led to the discovery of candidate hair biomarkers and may provide insight into the complex biology of hair aging and identify targets for effective therapies. This review provides an up-to-date overview of recent omics discoveries, including age-associated alterations of proteins and metabolites in the hair shaft and follicle, and highlights the significance of hair aging and graying biomarker discoveries. The decline in hair follicle stem cell activity with aging decreased the regeneration capacity of hair follicles. Cellular senescence, oxidative damage and altered extracellular matrix of hair follicle constituents characterized hair follicle and hair shaft aging and graying. The review attempts to correlate the impact of endogenous and exogenous factors on hair aging. We close by discussing the main challenges and limitations of the field, defining major open questions and offering an outlook for future research.
Collapse
Affiliation(s)
- Sunil S Adav
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore; Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore.
| |
Collapse
|
3
|
Rosenberg AM, Rausser S, Ren J, Mosharov EV, Sturm G, Ogden RT, Patel P, Kumar Soni R, Lacefield C, Tobin DJ, Paus R, Picard M. Quantitative mapping of human hair greying and reversal in relation to life stress. eLife 2021; 10:67437. [PMID: 34155974 PMCID: PMC8219384 DOI: 10.7554/elife.67437] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Hair greying is a hallmark of aging generally believed to be irreversible and linked to psychological stress. Methods: Here, we develop an approach to profile hair pigmentation patterns (HPPs) along individual human hair shafts, producing quantifiable physical timescales of rapid greying transitions. Results: Using this method, we show white/grey hairs that naturally regain pigmentation across sex, ethnicities, ages, and body regions, thereby quantitatively defining the reversibility of greying in humans. Molecularly, grey hairs upregulate proteins related to energy metabolism, mitochondria, and antioxidant defenses. Combining HPP profiling and proteomics on single hairs, we also report hair greying and reversal that can occur in parallel with psychological stressors. To generalize these observations, we develop a computational simulation, which suggests a threshold-based mechanism for the temporary reversibility of greying. Conclusions: Overall, this new method to quantitatively map recent life history in HPPs provides an opportunity to longitudinally examine the influence of recent life exposures on human biology. Funding: This work was supported by the Wharton Fund and NIH grants GM119793, MH119336, and AG066828 (MP). Hair greying is a visible sign of aging that affects everyone. The loss of hair color is due to the loss of melanin, a pigment found in the skin, eyes and hair. Research in mice suggests stress may accelerate hair greying, but there is no definitive research on this in humans. This is because there are no research tools to precisely map stress and hair color over time. But, just like tree rings hold information about past decades, and rocks hold information about past centuries, hairs hold information about past months and years. Hair growth is an active process that happens under the skin inside hair follicles. It demands lots of energy, supplied by structures inside cells called mitochondria. While hairs are growing, cells receive chemical and electrical signals from inside the body, including stress hormones. It is possible that these exposures change proteins and other molecules laid down in the growing hair shaft. As the hair grows out of the scalp, it hardens, preserving these molecules into a stable form. This preservation is visible as patterns of pigmentation. Examining single-hairs and matching the patterns to life events could allow researchers to look back in time through a person’s biological history. Rosenberg et al. report a new way to digitize and measure small changes in color along single human hairs. This method revealed that some white hairs naturally regain their color, something that had not been reported in a cohort of healthy individuals before. Aligning the hair pigmentation patterns with recent reports of stress in the hair donors’ lives showed striking associations. When one donor reported an increase in stress, a hair lost its pigment. When the donor reported a reduction in stress, the same hair regained its pigment. Rosenberg et al. mapped hundreds of proteins inside the hairs to show that white hairs contained more proteins linked to mitochondria and energy use. This suggests that metabolism and mitochondria may play a role in hair greying. To explore these observations in more detail Rosenberg et al. developed a mathematical model that simulates the greying of a whole head of hair over a lifetime, an experiment impossible to do with living people. The model suggested that there might be a threshold for temporary greying; if hairs are about to go grey anyway, a stressful event might trigger that change earlier. And when the stressful event ends, if a hair is just above the threshold, then it could revert back to dark. The new method for measuring small changes in hair coloring opens up the possibility of using hair pigmentation patterns like tree rings. This could track the influence of past life events on human biology. In the future, monitoring hair pigmentation patterns could provide a way to trace the effectiveness of treatments aimed at reducing stress or slowing the aging process. Understanding how ‘old’ white hairs regain their ‘young’ pigmented state could also reveal new information about the malleability of human aging more generally.
Collapse
Affiliation(s)
- Ayelet M Rosenberg
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, United States
| | - Shannon Rausser
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, United States
| | - Junting Ren
- Department of Biostatistics, Mailman School of Public Health, Columbia University Irving Medical Center, New York, United States
| | - Eugene V Mosharov
- Department of Psychiatry, Division of Molecular Therapeutics, Columbia University Irving Medical Center, New York, United States.,New York State Psychiatric Institute, New York, United States
| | - Gabriel Sturm
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, United States
| | - R Todd Ogden
- Department of Biostatistics, Mailman School of Public Health, Columbia University Irving Medical Center, New York, United States
| | - Purvi Patel
- Proteomics and Macromolecular Crystallography Shared Resource, Columbia University Irving Medical Center, New York, United States
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Columbia University Irving Medical Center, New York, United States
| | - Clay Lacefield
- New York State Psychiatric Institute, New York, United States
| | - Desmond J Tobin
- UCD Charles Institute of Dermatology & UCD Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, United States.,Centre for Dermatology Research, University of Manchester, Manchester, United Kingdom.,Monasterium Laboratory, Münster, Germany
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, United States.,New York State Psychiatric Institute, New York, United States.,Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, United States
| |
Collapse
|
4
|
Tiede S, Hundt JE, Paus R. UDP-GlcNAc-1-Phosphotransferase Is a Clinically Important Regulator of Human and Mouse Hair Pigmentation. J Invest Dermatol 2021; 141:2957-2965.e5. [PMID: 34116066 DOI: 10.1016/j.jid.2021.04.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 04/14/2021] [Accepted: 04/25/2021] [Indexed: 12/27/2022]
Abstract
UDP-GlcNAc-1-phosphotransferase, a product of two separate genes (GNPTAB, GNPTG), is essential for the sorting and transportation of lysosomal enzymes to lysosomes. GNPTAB gene defects cause extracellular missorting of lysosomal enzymes resulting in lysosomal storage diseases, namely mucolipidosis type II and mucolipidosis type III alpha/beta, which is associated with hair discoloration. Yet, the physiological functions of GNPTAB in the control of hair follicle (HF) pigmentation remain unknown. To elucidate these, we have silenced GNPTAB in organ-cultured human HFs as a human ex vivo model for mucolipidosis type II. GNPTAB silencing profoundly inhibited intrafollicular melanin production, the correct sorting of melanosomes, tyrosinase activity, and HMB45 expression in the HF pigmentary unit and altered HF melanocyte morphology in situ. In isolated primary human HF melanocytes, GNPTAB knockdown significantly reduced melanogenesis, tyrosinase activity, and correct tyrosinase protein sorting as well as POMC expression and caused the expected lysosomal enzyme missorting in vitro. Moreover, transgenic mice overexpressing an inserted missense mutation corresponding to that seen in human mucolipidosis type II and mucolipidosis type III alpha/beta showed significantly reduced HF pigmentation, thus corroborating the in vivo relevance of our ex vivo and in vitro findings in the human system. This identifies GNPTAB as a clinically important enzymatic control of human HF pigmentation, likely by directly controlling tyrosinase sorting and POMC transcription in HF melanocytes.
Collapse
Affiliation(s)
- Stephan Tiede
- International Center for Lysosomal Disorders, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; University Children's Research at Kinder-UKE, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jennifer E Hundt
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Ralf Paus
- Centre for Dermatology Research, University of Manchester, Manchester, United Kingdom; The NIHR Biomedical Research Centre, Manchester, United Kingdom; Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA; Monasterium Laboratory, Münster, Germany.
| |
Collapse
|
5
|
O'Sullivan JDB, Nicu C, Picard M, Chéret J, Bedogni B, Tobin DJ, Paus R. The biology of human hair greying. Biol Rev Camb Philos Soc 2020; 96:107-128. [PMID: 32965076 DOI: 10.1111/brv.12648] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
Abstract
Hair greying (canities) is one of the earliest, most visible ageing-associated phenomena, whose modulation by genetic, psychoemotional, oxidative, senescence-associated, metabolic and nutritional factors has long attracted skin biologists, dermatologists, and industry. Greying is of profound psychological and commercial relevance in increasingly ageing populations. In addition, the onset and perpetuation of defective melanin production in the human anagen hair follicle pigmentary unit (HFPU) provides a superb model for interrogating the molecular mechanisms of ageing in a complex human mini-organ, and greying-associated defects in bulge melanocyte stem cells (MSCs) represent an intriguing system of neural crest-derived stem cell senescence. Here, we emphasize that human greying invariably begins with the gradual decline in melanogenesis, including reduced tyrosinase activity, defective melanosome transfer and apoptosis of HFPU melanocytes, and is thus a primary event of the anagen hair bulb, not the bulge. Eventually, the bulge MSC pool becomes depleted as well, at which stage greying becomes largely irreversible. There is still no universally accepted model of human hair greying, and the extent of genetic contributions to greying remains unclear. However, oxidative damage likely is a crucial driver of greying via its disruption of HFPU melanocyte survival, MSC maintenance, and of the enzymatic apparatus of melanogenesis itself. While neuroendocrine factors [e.g. alpha melanocyte-stimulating hormone (α-MSH), adrenocorticotropic hormone (ACTH), ß-endorphin, corticotropin-releasing hormone (CRH), thyrotropin-releasing hormone (TRH)], and micropthalmia-associated transcription factor (MITF) are well-known regulators of human hair follicle melanocytes and melanogenesis, how exactly these and other factors [e.g. thyroid hormones, hepatocyte growth factor (HGF), P-cadherin, peripheral clock activity] modulate greying requires more detailed study. Other important open questions include how HFPU melanocytes age intrinsically, how psychoemotional stress impacts this process, and how current insights into the gerontobiology of the human HFPU can best be translated into retardation or reversal of greying.
Collapse
Affiliation(s)
- James D B O'Sullivan
- Dr. Philip Frost Department for Dermatology and Cutaneous Surgery, University of Miami, Miami, Florida, 33136, U.S.A
| | - Carina Nicu
- Dr. Philip Frost Department for Dermatology and Cutaneous Surgery, University of Miami, Miami, Florida, 33136, U.S.A
| | - Martin Picard
- Departments of Psychiatry and Neurology, Columbia University Irving Medical Center, 622 W 168th Street, PH1540N, New York, 10032, U.S.A
| | - Jérémy Chéret
- Dr. Philip Frost Department for Dermatology and Cutaneous Surgery, University of Miami, Miami, Florida, 33136, U.S.A
| | - Barbara Bedogni
- Dr. Philip Frost Department for Dermatology and Cutaneous Surgery, University of Miami, Miami, Florida, 33136, U.S.A
| | - Desmond J Tobin
- Charles Institute of Dermatology, University College Dublin, Dublin 4, Ireland
| | - Ralf Paus
- Dr. Philip Frost Department for Dermatology and Cutaneous Surgery, University of Miami, Miami, Florida, 33136, U.S.A.,Monasterium Laboratory, Skin & Hair Research Solutions GmbH, Münster, D-48149, Germany.,Centre for Dermatology Research, NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester, M13 9PT, U.K
| |
Collapse
|
6
|
Jo SK, Lee JY, Lee Y, Kim CD, Lee JH, Lee YH. Three Streams for the Mechanism of Hair Graying. Ann Dermatol 2018; 30:397-401. [PMID: 30065578 PMCID: PMC6029974 DOI: 10.5021/ad.2018.30.4.397] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/09/2018] [Indexed: 02/06/2023] Open
Abstract
Hair graying is an obvious sign of human aging. Although graying has been investigated extensively, the mechanism remains unclear. Here, we reviewed previous studies on the mechanism of graying and seek to offer some new insights. The traditional view is that hair graying is caused by exhaustion of the pigmentary potential of the melanocytes of hair bulbs. Melanocyte dysfunction may be attributable to the effects of toxic reactive oxygen species on melanocyte nuclei and mitochondria. A recent study suggests that bulge melanocyte stem cells (MSCs) are the key cells in play. Graying may be caused by defective MSC self-maintenance, not by any deficiency in bulbar melanocytes. Our previous study suggested that graying may be principally attributable to active hair growth. Active hair growth may produce oxidative or genotoxic stress in hair bulge. These internal stress may cause eventually depletion of MSC in the hair follicles. Taken together, hair graying may be caused by MSC depletion by genotoxic stress in the hair bulge. Hair graying may also be sometimes caused by dysfunction of the melanocytes by oxidative stress in the hair bulb. In addition, hair graying may be attributable to MSC depletion by active hair growth.
Collapse
Affiliation(s)
- Seong Kyeong Jo
- Department of Anatomy, Chungnam National University College of Medicine, Daejeon, Korea
| | - Ji Yeon Lee
- Department of Anatomy, Chungnam National University College of Medicine, Daejeon, Korea
| | - Young Lee
- Department of Dermatology, Chungnam National University College of Medicine, Daejeon, Korea
| | - Chang Deok Kim
- Department of Dermatology, Chungnam National University College of Medicine, Daejeon, Korea
| | - Jeung-Hoon Lee
- Department of Dermatology, Chungnam National University College of Medicine, Daejeon, Korea
| | - Young Ho Lee
- Department of Anatomy, Chungnam National University College of Medicine, Daejeon, Korea
| |
Collapse
|
7
|
Fargallo JA, Martínez F, Wakamatsu K, Serrano D, Blanco G. Sex-Dependent Expression and Fitness Consequences of Sunlight-Derived Color Phenotypes. Am Nat 2018; 191:726-743. [DOI: 10.1086/697218] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Paus R, Langan EA, Vidali S, Ramot Y, Andersen B. Neuroendocrinology of the hair follicle: principles and clinical perspectives. Trends Mol Med 2014; 20:559-70. [DOI: 10.1016/j.molmed.2014.06.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 06/09/2014] [Accepted: 06/12/2014] [Indexed: 12/16/2022]
|
9
|
Slominski AT, Zmijewski MA, Zbytek B, Tobin DJ, Theoharides TC, Rivier J. Key role of CRF in the skin stress response system. Endocr Rev 2013; 34:827-84. [PMID: 23939821 PMCID: PMC3857130 DOI: 10.1210/er.2012-1092] [Citation(s) in RCA: 291] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 08/02/2013] [Indexed: 02/08/2023]
Abstract
The discovery of corticotropin-releasing factor (CRF) or CRH defining the upper regulatory arm of the hypothalamic-pituitary-adrenal (HPA) axis, along with the identification of the corresponding receptors (CRFRs 1 and 2), represents a milestone in our understanding of central mechanisms regulating body and local homeostasis. We focused on the CRF-led signaling systems in the skin and offer a model for regulation of peripheral homeostasis based on the interaction of CRF and the structurally related urocortins with corresponding receptors and the resulting direct or indirect phenotypic effects that include regulation of epidermal barrier function, skin immune, pigmentary, adnexal, and dermal functions necessary to maintain local and systemic homeostasis. The regulatory modes of action include the classical CRF-led cutaneous equivalent of the central HPA axis, the expression and function of CRF and related peptides, and the stimulation of pro-opiomelanocortin peptides or cytokines. The key regulatory role is assigned to the CRFR-1α receptor, with other isoforms having modulatory effects. CRF can be released from sensory nerves and immune cells in response to emotional and environmental stressors. The expression sequence of peptides includes urocortin/CRF→pro-opiomelanocortin→ACTH, MSH, and β-endorphin. Expression of these peptides and of CRFR-1α is environmentally regulated, and their dysfunction can lead to skin and systemic diseases. Environmentally stressed skin can activate both the central and local HPA axis through either sensory nerves or humoral factors to turn on homeostatic responses counteracting cutaneous and systemic environmental damage. CRF and CRFR-1 may constitute novel targets through the use of specific agonists or antagonists, especially for therapy of skin diseases that worsen with stress, such as atopic dermatitis and psoriasis.
Collapse
Affiliation(s)
- Andrzej T Slominski
- MD, PhD, Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center; 930 Madison Avenue, Suite 500, Memphis, Tennessee 38163.
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
The role of neurohormones and neuropeptides in human hair follicle (HF) pigmentation extends far beyond the control of melanin synthesis by α-MSH and ACTH and includes melanoblast differentiation, reactive oxygen species scavenging, maintenance of HF immune privilege, and remodeling of the HF pigmentary unit (HFPU). It is now clear that human HFs are not only a target of multiple neuromediators, but also are a major non-classical production site for neurohormones such as CRH, proopiomelanocortin, ACTH, α-MSH, ß-endorphin, TRH, and melatonin. Moreover, human HFs have established a functional peripheral equivalent of the hypothalamic-pituitary-adrenal axis. By charting the author's own meanderings through the jungle of hair pigmentation research, the current perspectives essay utilizes four clinical observations - hair repigmentation, canities, poliosis, and 'overnight greying'- as points of entry into the enigmas and challenges of .pigmentary HF neuroendocrinology. After synthesizing key principles and defining major open questions in the field, selected research avenues are delineated that appear clinically most promising. In this context, novel neuroendocrinological strategies to retard or reverse greying and to reduce damage to the HFPU are discussed.
Collapse
Affiliation(s)
- Ralf Paus
- Department of Dermatology, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
11
|
Wang L, Million M, Rivier J, Rivier C, Craft N, Stenzel-Poore MP, Taché Y. CRF receptor antagonist astressin-B reverses and prevents alopecia in CRF over-expressing mice. PLoS One 2011; 6:e16377. [PMID: 21359208 DOI: 10.1371/journal.pone.0016377] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 12/13/2010] [Indexed: 01/13/2023] Open
Abstract
Corticotropin-releasing factor (CRF) signaling pathways are involved in the stress response, and there is growing evidence supporting hair growth inhibition of murine hair follicle in vivo upon stress exposure. We investigated whether the blockade of CRF receptors influences the development of hair loss in CRF over-expressing (OE)-mice that display phenotypes of Cushing's syndrome and chronic stress, including alopecia. The non-selective CRF receptors antagonist, astressin-B (5 µg/mouse) injected peripherally once a day for 5 days in 4-9 months old CRF-OE alopecic mice induced pigmentation and hair re-growth that was largely retained for over 4 months. In young CRF-OE mice, astressin-B prevented the development of alopecia that occurred in saline-treated mice. Histological examination indicated that alopecic CRF-OE mice had hair follicle atrophy and that astressin-B revived the hair follicle from the telogen to anagen phase. However, astressin-B did not show any effect on the elevated plasma corticosterone levels and the increased weights of adrenal glands and visceral fat in CRF-OE mice. The selective CRF₂ receptor antagonist, astressin₂-B had moderate effect on pigmentation, but not on hair re-growth. The commercial drug for alopecia, minoxidil only showed partial effect on hair re-growth. These data support the existence of a key molecular switching mechanism triggered by blocking peripheral CRF receptors with an antagonist to reset hair growth in a mouse model of alopecia associated with chronic stress.
Collapse
Affiliation(s)
- Lixin Wang
- Division of Digestive Diseases, Department of Medicine, CURE and Center for Neurobiological Stress, David Geffen School of Medicine at University of California Los Angeles, VA Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
| | | | | | | | | | | | | |
Collapse
|
12
|
|
13
|
|
14
|
Abstract
Skin and hair phenotypes are powerful cues in human communication. They impart much information, not least about our racial, ethnic, health, gender and age status. In the case of the latter parameter, we experience significant change in pigmentation in our journey from birth to puberty and through to young adulthood, middle age and beyond. The hair follicle pigmentary unit is perhaps one of our most visible, accessible and potent aging sensors, with marked dilution of pigment intensity occurring long before even subtle changes are seen in the epidermis. This dichotomy is of interest as both skin compartments contain melanocyte subpopulations of similar embryologic (i.e., neural crest) origin. Research groups are actively pursuing the study of the differential aging of melanocytes in the hair bulb versus the epidermis and in particular are examining whether this is in part linked to the stringent coupling of follicular melanocytes to the hair growth cycle. Whether some follicular melanocyte subpopulations are affected, like epidermal melanocytes, by UV irradiation is not yet clear. A particular target of research into hair graying or canities is the nature of the melanocyte stem compartment and whether this is depleted due to reactive oxygen species-associated damage, coupled with an impaired antioxidant status, and a failure of melanocyte stem cell renewal. Over the last few years, we and others have developed advanced in vitro models and assay systems for isolated hair follicle melanocytes and for intact anagen hair follicle organ culture which may provide research tools to elucidate the regulatory mechanisms of hair follicle pigmentation. Long term, it may be feasible to develop strategies to modulate some of these aging-associated changes in the hair follicle that impinge particularly on the melanocyte populations.
Collapse
Affiliation(s)
- Desmond J Tobin
- Centre for Skin Sciences, School of Life Sciences, University of Bradford, Bradford, West Yorkshire, Great Britain
| |
Collapse
|
15
|
Bigliardi PL, Tobin DJ, Gaveriaux-Ruff C, Bigliardi-Qi M. Opioids and the skin - where do we stand? Exp Dermatol 2009; 18:424-30. [DOI: 10.1111/j.1600-0625.2009.00844.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Bodó E, Kromminga A, Bíró T, Borbíró I, Gáspár E, Zmijewski MA, van Beek N, Langbein L, Slominski AT, Paus R. Human female hair follicles are a direct, nonclassical target for thyroid-stimulating hormone. J Invest Dermatol 2008; 129:1126-39. [PMID: 19052559 DOI: 10.1038/jid.2008.361] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pituitary thyroid-stimulating hormone (TSH) regulates thyroid hormone synthesis via receptors (TSH-R) expressed on thyroid epithelial cells. As the hair follicle (HF) is uniquely hormone-sensitive and, hypothyroidism with its associated, increased TSH serum levels clinically can lead to hair loss, we asked whether human HFs are a direct target for TSH. Here, we report that normal human scalp skin and microdissected human HFs express TSH-R mRNA. TSH-R-like immunoreactivity is limited to the mesenchymal skin compartments in situ. TSH may alter HF mesenchymal functions, as it upregulates alpha-smooth muscle actin expression in HF fibroblasts. TSH-R stimulation by its natural ligand in organ culture changes the expression of several genes of human scalp HFs (for example keratin K5), upregulates the transcription of classical TSH target genes and enhances cAMP production. Although the functional role of TSH in human HF biology awaits further dissection, these findings document that intracutaneous TSH-Rs are fully functional in situ and that HFs of female individuals are direct targets for nonclassical, extrathyroidal TSH bioregulation. This suggests that organ-cultured scalp HFs provide an instructive and physiologically relevant human model for exploring nonclassical functions of TSH, in and beyond the skin.
Collapse
Affiliation(s)
- Enikö Bodó
- Department of Dermatology, University Hospital Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Skin and hair colour contribute significantly to our overall visual appearance and to social/sexual communication. Despite their shared origins in the embryologic neural crest, the hair follicle and epidermal pigmentary units occupy distinct, although open, cutaneous compartments. They can be distinguished principally on the basis of the former's stringent coupling to the hair growth cycle compared with the latter's continuous melanogenesis. The biosynthesis of melanin and its subsequent transfer from melanocyte to hair bulb keratinocytes depend on the availability of melanin precursors and on a raft of signal transduction pathways that are both highly complex and commonly redundant. These signalling pathways can be both dependent and independent of receptors, act through auto-, para- or intracrine mechanisms and can be modified by hormonal signals. Despite many shared features, follicular melanocytes appear to be more sensitive than epidermal melanocytes to ageing influences. This can be seen most dramatically in hair greying/canities and this is likely to reflect significant differences in the epidermal and follicular microenvironments. The hair follicle pigmentary unit may also serve as an important environmental sensor, whereby hair pigment contributes to the rapid excretion of heavy metals, chemicals and toxins from the body by their selective binding to melanin; rendering the hair fibre a useful barometer of exposures. The recent availability of advanced cell culture methodologies for isolated hair follicle melanocytes and for intact anagen hair follicle organ culture should provide the research tools necessary to elucidate the regulatory mechanisms of hair follicle pigmentation. In the longer term, it may be feasible to develop hair colour modifiers of a biological nature to accompany those based on chemicals.
Collapse
Affiliation(s)
- D J Tobin
- Centre for Skin Sciences, School of Life Sciences, University of Bradford, Richmond Road, Bradford, West Yorkshire, UK.
| |
Collapse
|
18
|
Wood JM, Schallreuter KU. A plaidoyer for cutaneous enzymology: our view of some important unanswered questions on the contributions of selected key enzymes to epidermal homeostasis. Exp Dermatol 2008; 17:569-78. [PMID: 18479438 DOI: 10.1111/j.1600-0625.2008.00754.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This review highlights the importance of enzymology, a field of great neglect in current cutaneous biology research. It was therefore the aim by using selected examples of epidermal enzymes and their action including some open questions to demonstrate the importance of this area. Clearly a thorough understanding of basic knowledge in this field is needed which in turn offers a plethora of innovative research projects for a curious mind. Moreover, in order to gain the closest understanding to the truth instead of generating esoteric results, emphasis is put forward on a holistic view utilizing a combination of modern and sometimes old methods to get the answer. Last but not least the bench work is only useful for the welfare of our patients if we can apply our basic knowledge.
Collapse
Affiliation(s)
- John M Wood
- Department of Biomedical Sciences, Clinical and Experimental Dermatology, School of Life Sciences, University of Bradford, Bradford, UK
| | | |
Collapse
|
19
|
Paus R, Arck P, Tiede S. (Neuro-)endocrinology of epithelial hair follicle stem cells. Mol Cell Endocrinol 2008; 288:38-51. [PMID: 18423849 DOI: 10.1016/j.mce.2008.02.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 02/26/2008] [Accepted: 02/26/2008] [Indexed: 12/17/2022]
Abstract
The hair follicle is a repository of different types of somatic stem cells. However, even though the hair follicle is both a prominent target organ and a potent, non-classical site of production and/or metabolism of numerous polypetide- and steroid hormones, neuropeptides, neurotransmitters and neurotrophins, the (neuro-)endocrine controls of hair follicle epithelial stem cell (HFeSC) biology remain to be systematically explored. Focussing on HFeSCs, we attempt here to offer a "roadmap through terra incognita" by listing key open questions, by exploring endocrinologically relevant HFeSC gene profiling and mouse genomics data, and by sketching several clinically relevant pathways via which systemic and/or locally generated (neuro-)endocrine signals might impact on HFeSC. Exemplarily, we discuss, e.g. the potential roles of glucocorticoid and vitamin D receptors, the hairless gene product, thymic hormones, bone morphogenic proteins (BMPs) and their antagonists, and Skg-3 in HFeSC biology. Furthermore, we elaborate on the potential role of nerve growth factor (NGF) and substance P-dependent neurogenic inflammation in HFeSC damage, and explore how neuroendocrine signals may influence the balance between maintenance and destruction of hair follicle immune privilege, which protects these stem cells and their progeny. These considerations call for a concerted research effort to dissect the (neuro-)endocrinology of HFeSCs much more systematically than before.
Collapse
Affiliation(s)
- Ralf Paus
- Department of Dermatology, University of Lübeck, Lübeck, Germany.
| | | | | |
Collapse
|
20
|
|
21
|
Abstract
Melatonin, the chief secretory product of the pineal gland, has long been known to modulate hair growth, pigmentation and/or molting in many species, presumably as a key neuroendocrine regulator that couples coat phenotype and function to photoperiod-dependent environmental and reproductive changes. However, the detailed effects and mechanisms of this surprisingly pleiotropic indole on the hair follicle (HF) regarding growth control and pigmentation have not yet been completely understood. While unspecific melatonin binding sites have long been identified (e.g., in goat and mouse HFs), specific melatonin membrane MT2 receptor transcripts and both protein and mRNA expression for a specific nuclear melatonin binding site [retinoid-related orphan receptor alpha (RORalpha)] have only recently been identified in murine HFs. MT1, known to be expressed in human skin cells, is not transcribed in mouse skin. After initial enzymologic data from hamster skin related to potential intracutaneous melatonin synthesis, it has recently been demonstrated that murine and human skin, namely human scalp HFs in anagen, are important sites of extrapineal melatonin synthesis. Moreover, HF melatonin production is enhanced by catecholamines (as it classically occurs in the pineal gland). Melatonin may also functionally play a role in hair-cycle control, as it down-regulates both apoptosis and estrogen receptor-alpha expression, and modulates MT2 and RORalpha expression in murine skin in a hair-cycle-dependent manner. Because of melatonin's additional potency as a free radical scavenger and DNA repair inducer, the metabolically and proliferatively highly active anagen hair bulb may also exploit melatonin synthesis in loco as a self-cytoprotective strategy.
Collapse
Affiliation(s)
- Tobias W Fischer
- Department of Dermatology, University Hospital Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | | | | | | |
Collapse
|
22
|
Abstract
There are many mechanisms by which melanocytes, keratinocytes, and Langerhans cells interact within the epidermis. Inflammatory mediators affect melanocyte function and melanogenic agents such as alpha-MSH alter the functions of keratinocytes and Langerhans cells. The epidermal melanin unit is better labeled the KLM unit.
Collapse
|
23
|
Abstract
At birth, commensal microbes penetrate into the skin of the human newborn, eliciting an acute rash, erythema toxicumn neonatorum. Histologically, the rash is characterized by an upregulation of proinflammatory activity and a local recruitment of immunocytes, including macrophages. High mobility group box chromosomal protein 1, a nuclear and cytosolic protein, is also a pro-inflammatory cytokine released by macrophages in response to microbial stimulation. Here, we reasoned that macrophages but also keratinocytes might upregulate this protein in response to the first colonization and that high mobility group box chromosomal protein 1 might play a role as a proinflammatory mediator in the development and progression of erythema toxicum. Punch biopsy specimens from 1-day-old healthy infants, seven with and four without erythema toxicum were analyzed with indirect immunohistochemistry and two different antihigh mobility group box chromosomal protein 1 antibodies, immunofluorescence, nuclear counterstaining, confocal and immunoelectron imaging. We found relocation of nuclear high mobility group box chromosomal protein 1 into the cytoplasm in keratinocytes and macrophages in erythema toxicum. Cytoplasmatic high mobility group box chromosomal protein 1 was also found in melanocytes and did neither co-locate with lysosomal-associated membrane proteins nor with melanosomes. We speculate that terrestrial adaptation triggers the induction of the endogenous "danger signal" high mobility group box chromosomal protein 1 in the skin of the newborn infant, perhaps in response to the first commensal colonization and that this signal may contribute to alert the immune system and promote a protective immune response.
Collapse
|
24
|
Abstract
This paper is the 28th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over a quarter-century of research. It summarizes papers published during 2005 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity, neurophysiology and transmitter release (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| | | |
Collapse
|
25
|
Abstract
Skin and bone - what comes to mind at hearing this phrase? While certainly a metaphor for disease, it also defines two very different tissues, one a flexible and contiguous outer covering, the other a morphologically diverse hard tissue distributed at over 200 sites in the body. As the accompanying series of Reviews highlights, these tissues are indeed diverse, but there are also surprising similarities. Skin is the interface between the internal organs and the environment, and as such plays a crucial role in the body's defense mechanism. The skin and its many appendages are responsible for functions as diverse as epidermal barrier and defense, immune surveillance, UV protection, thermoregulation, sweating, lubrication, pigmentation, the sensations of pain and touch, and, importantly, the protection of various stem cell niches in the skin. Bone serves a number of purposes: it provides protection for vital organs, a lever for locomotion, a reservoir for calcium, and the site of adult hematopoiesis. The tissue is composed of osteoblasts, osteoclasts, and their individual precursors plus a complex mixture of mesenchymal, myeloid, and lymphoid cells in the marrow space. Finally, the endothelial microenvironment provides nutrition and is a conduit for the influx and emigration of cells that impact bone biology in several important ways. This Review series guides the reader through these various facets of 2 diverse, yet interdependent, tissues.
Collapse
Affiliation(s)
- F. Patrick Ross
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA.
Departments of Dermatology and Genetics and Development, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Angela M. Christiano
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA.
Departments of Dermatology and Genetics and Development, Columbia University College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|